首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, magnetic chitosan microspheres were prepared by the emulsification cross-linking technique, with glutaraldehyde as the cross-linking agent, liquid paraffin as the dispersant, and the Span-80 as emulsifier. The time of cross-linking and the ratio of Co0.5Ni0.5Fe2O4/chitosan were investigated. The morphology was studied by different instruments. The adsorption performance was investigated and the effects of initial concentration of methyl orange, the time of cross-linking, and the amount of adsorbent were discussed. It is found that the product has uniform morphology when the ratio of magnetic Co0.5Ni0.5Fe2O4/chitosan is 1 : 2 and the time of cross-linking is 5 h; At room temperature, magnetic Co0.5Ni0.5Fe2O4–chitosan has a good adsorption toward methyl orange when the magnetic Co0.5Ni0.5Fe2O4/chitosan dosage is 20 mg.  相似文献   

2.
Nickel zinc ferrite (Ni0.4Zn0.6Fe2O4) films on Si (100) substrate were synthesized using a spin-coating method. The crystallinity of the Ni0.4Zn0.6Fe2O4 films with the thickness of about 386 nm became better as the annealing temperature increased. The films have smooth surface, relatively good packing density and uniform thickness. The volatilization of Zn is serious at 900 °C. With the increase of annealing temperature, the saturation magnetization M s increases in the temperature ranging from 400 to 700 °C, however, decreases above 700 °C, and the coercivity H c increases in the temperature range 400–800 °C, decreases above 800 °C. After annealed at 700 °C for 2 h in air with the heating rate 2 °C/min, the film shows a maximum saturation magnetization M s of 349 emu/cc and low coercivity H c of 66 Oe. The M s is higher than others which prepared by this method, however, the H c is lower. The M s of Ni0.4Zn0.6Fe2O4 films annealed at 700 °C increases with increasing annealing time and the H c changes slightly.  相似文献   

3.
The reaction of Bi2O3 + Fe2O3 mixtures with chlorine and SO2 at 250–700°C is studied. At 300–500°C, the degree of bismuth chloride sublimation from the oxide mixture increases in the presence of SO2. Chemical sublimation of FeCl3 occurs after BiCl3 is virtually completely recovered from the solid phase.  相似文献   

4.
Sr0.8La0.2Zn0.2Fe11.8O19/poly(vinyl pyrrolidone) (PVP) composite fiber precursors were prepared by the sol–gel assisted electrospinning. Subsequently, the M-type ferrite Sr0.8La0.2Zn0.2Fe11.8O19 nanofibers with diameters about 120 nm were obtained by calcination of these precursors at different heat treatment conditions. The precursor and resultant Sr0.8La0.2Zn0.2Fe11.8O19 nanofibers were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectrometer and vibrating sample magnetometer. With the calcination temperature increased up to 1,000 °C for 2 h or the holding time prolonged to 12 h at 900 °C, the Sr0.8La0.2Zn0.2Fe11.8O19 particles gradually grow into a hexagonal elongated plate-like morphology due to the dimensional control along the nanofiber length. These elongated plate-like particles will be linked one by one to form the nanofiber with a necklace-like morphology. The magnetic properties of the Sr0.8La0.2Zn0.2Fe11.8O19 nanofibers are closely related to grain sizes, impurities and defects in the ferrite, which are influenced by the calcination temperature, holding time and heating rate. After calcined at 900 °C for 12 h with a heating rate of 3 °C/min, the optimized magnetic properties are achieved with the specific saturation magnetization 75.0 A m2 kg−1 and coercivity 426.3 kA m−1 for the Sr0.8La0.2Zn0.2Fe11.8O19 nanofibers.  相似文献   

5.
Fe3O4 nanorods and Fe2O3 nanowires have been synthesized through a simple thermal oxide reaction of Fe with C2H2O4 solution at 200–600°C for 1 h in the air. The morphology and structure of Fe3O4 nanorods and Fe2O3 nanowires were detected with powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The influence of temperature on the morphology development was experimentally investigated. The results show that the polycrystals Fe3O4 nanorods with cubic structure and the average diameter of 0.5–0.8 μm grow after reaction at 200–500°C for 1 h in the air. When the temperature was 600°C, the samples completely became Fe2O3 nanowires with hexagonal structure. It was found that C2H2O4 molecules had a significant effect on the formation of Fe3O4 nanorods. A possible mechanism was also proposed to account for the growth of these Fe3O4 nanorods. Supported by the Fund of Weinan Teacher’s University (Grant No. 08YKZ008), the National Natural Science Foundation of China (Grant No. 20573072) and the Doctoral Fund of Ministry of Education of China (Grant No. 20060718010)  相似文献   

6.
As the solubility is a direct measure of stability, this study compares the solubilities of ZnFe2O4, Fe3O4 and Fe2O3 in high temperature water. Through literature analysis and formula derivation, it is shown that it is reasonable to assume ZnFe2O4 and Fe(OH)3 coexist when ZnFe2O4 is dissolved in water. Results indicated that the solubility of ZnFe2O4 is much lower than that of Fe2O3 or Fe3O4. The low solubility of ZnFe2O4 indicates that it is more protectively stable as an anticorrosion phase. Moreover, the gap between the solubility of ZnFe2O4 and that of Fe3O4 or Fe2O3 was enlarged with an increase of temperature. This means that ZnFe2O4 is more protective at higher temperatures. Further analysis indicated that with the increase of temperature, the solubility of ZnFe2O4 changed little while those of Fe2O3 or Fe3O4 changed a lot. Little change of the solubility of ZnFe2O4 with increase of temperature showed that ZnFe2O4 is stable. The very low and constant solubility of ZnFe2O4 suggests that it is more protective than Fe2O3 and Fe3O4, especially in water at higher temperature.  相似文献   

7.
This article presents a study on obtaining Ni, Zn ferrite starting from Fe(III), Ni (II), Zn (II) nitrates and some polyols: 1,2-propane diol, 1,3-propane diol and glycerol. While heating, a redox reaction takes place between nitrate anion and polyol, with formation of carboxylate type precursors. The obtained precursors have been investigated by thermal analysis, FT-IR spectrometry and atomic absorption spectroscopy. The thermal decomposition of the synthesized precursors up to 350 °C leads to the formation of Ni, Zn ferrite as unique phase, evidenced by XRD. The average diameter of the ferrite crystallites, estimated from XRD data, takes values within the range 20–50 nm, depending on the annealing temperature. Transmission Electron Microscopy has evidenced the obtaining of spherical, agglomerated nanoparticles. The magnetic properties of the synthesized samples, measured in cvasistatic magnetic field (50 Hz) are characteristic for the Ni, Zn ferrite nanoparticles, with narrow hysteresis cycle and values of the saturation magnetization <70 emu/g.  相似文献   

8.
This article presents the results of our investigation on the obtaining of Ni0.65Zn0.35Fe2O4 ferrite nanoparticles embedded in a SiO2 matrix using a modified sol–gel synthesis method, starting from tetraethylorthosilicate (TEOS), metal (FeIII,NiII,ZnII) nitrates and ethylene glycol (EG). This method consists in the formation of carboxylate type complexes, inside the silica matrix, used as forerunners for the ferrite/silica nanocomposites. We prepared gels with different compositions, in order to obtain, through a suitable thermal treatment, the nanocomposites (Ni0.65Zn0.35Fe2O4)x–(SiO2)100–x (where x=10, 20, 30, 40, 50, 60 mass%). The synthesized gels were studied by differential thermal analysis (DTA), thermogravimetry (TG) and FTIR spectroscopy. The formation of Ni–Zn ferrite in the silica matrix and the behavior in an external magnetic field were studied by X-ray diffraction (XRD) and quasi-static magnetic measurements (50 Hz).  相似文献   

9.
In this work, highly chemiluminescent magnetic mesoporous carbon with yolk-shell structure was synthesized by encapsulating N-(4-aminobutyl)-N-ethylisoluminol (ABEI) and Co2+ into the magnetic mesoporous carbon composites (Co2+-ABEI-Fe3O4@ void@C). The synthetic Co2+-ABEI-Fe3O4@void@C showed a good magnetic separation property, which could remove residual ABEI molecules and Co2+ in less than 3 min under an external magnet. Moreover, the synthetic Co2+-ABEI-Fe3O4@void@C demonstrated good chemiluminescence (CL) property and good stability when interacted with alkaline H2O2 solution. The CL intensity of such Co2+-ABEI-Fe3O4@void@C was about 120 times higher than that of ABEI-Fe3O4@void@C. The Co2+-ABEIFe3O4@ void@C also exhibited good electrochemiluminescence (ECL) property in alkaline solution. The outstanding CL/ECL performance of the Co2+-ABEI-Fe3O4@void@C was attributed to the Co2+ immobilized in the Co2+-ABEI-Fe3O4@void@C, which catalyzed the decomposition of H2O2 to generate O2?? and HO?, expediting the CL/ECL reaction. The synthetic Co2+-ABEI-Fe3O4@void@C may be of great application for the development of new methodologies in bioanalysis.  相似文献   

10.
Cobalt zinc ferrite, Co0.8Zn0.2Fe2O4, nanoparticles have been synthesized via autocatalytic decomposition of the precursor, cobalt zinc ferrous fumarato hydrazinate. The X-ray powder diffraction of the ‘as prepared’ oxide confirms the formation of single phase nanocrystalline cobalt zinc ferrite nanoparticles. The thermal decomposition of the precursor has been studied by isothermal, thermogravimetric and differential thermal analysis. The precursor has also been characterized by FTIR, and chemical analysis and its chemical composition has been determined as Co0.8Zn0.2Fe2(C4H2O4)3·6N2H4. The Curie temperature of the ‘as-prepared oxide’ was determined by AC susceptibility measurements.  相似文献   

11.
Ni0.6Zn0.4Fe2O4 nano-particles have been synthesized by self-propagating auto-combustion of nickel zinc ferrous fumarato-hydrazinate complex. The precursor complex has been characterized by chemical analysis, IR, AAS, thermal analysis and isothermal mass loss studies. The precursor on ignition undergoes self-propagating auto combustion to give Ni0.6Zn0.4Fe2O4. The X-ray diffraction studies confirmed the single phase formation of nano-size ‘as synthesized’ Ni0.6Zn0.4Fe2O4. TEM observation showed the average particle size to be 20 nm. Infrared and magnetization studies were also carried out on the ‘as synthesized’ Ni0.6Zn0.4Fe2O4. The lower value of saturation magnetization and higher Curie temperature of ‘as synthesized’ ferrite also hint at the nano size nature.  相似文献   

12.
Summary The adsorption of 99Tc on the adsorbers Fe, Fe2O3 and Fe3O4 was studied by batch experiments under aerobic and anoxic conditions. The effects of pH and CO32- concentration of the simulated ground water on the adsorption ratios were also investigated, and the valences of Tc in solution after the adsorption equilibrium were studied by solvent extraction. The adsorption isotherms of TcO4- on the adsorbers Fe, Fe2O3 and Fe3O4 were determined. Experimental results have shown that the adsorption ratio of Tc on Fe decreases with the increase of pH in the range of 5-12 and increases with the decrease of the CO32- concentration in the range of 10-8M-10-2M. Under aerobic conditions, the adsorption ratios of 99Tc on Fe2O3 and Fe3O4 were not influenced by pH and CO32-concentration. When Fe was used as adsorbent, Tc existed mainly in the form of Tc(IV) after equilibrium and in the form of Tc(VII) when the adsorbent was Fe2O3 or Fe3O4 under aerobic conditions. The adsorption ratios of Tc on Fe, Fe2O3 and Fe3O4 decreased with the increase of pH in the range of 5-12 and increased with the decrease of the CO32- concentration in the range of 10-8M-10-2M under anoxic conditions. Tc existed mainly in the form of Tc(IV) after equilibrium when Fe, Fe2O3 and Fe3O4 was the adsorbent under anoxic conditions. The adsorption isotherms of TcO4- on the adsorbers Fe, Fe2O3 and Fe3O4 are fairly in agreement with the Freundlich’s equation under both aerobic and anoxic conditions.  相似文献   

13.
14.
Differential thermal analysis (DTA) and thermogravimetric analysis (TGA) of an α-Bi2O3 sample revealed staged phase transitions in the range 720–800°C (at 720, 780, and 800°C) and the elimination of oxygen to the composition Bi2O2.967 during heating to 895°C in air at 16 K/min. In dynamic vacuum (p = 1.33 Pa) at 780–800°C, Bi2O3 consecutively transforms to a phase with the cubic γ-Bi2O3 structure and tetragonal Bi2O2.3?2.4. In the latter, electron diffraction in a transmission electron microscope (ED/TEM) shows a superstructure with the superstructure vector q 110 ≈ 1/9, which indicates an ordered arrangement of oxygen vacancies.  相似文献   

15.
The interaction between stabilizers and nanoparticles is one of the important factors to prepare stable magnetic fluids. The magnetic nano-size Fe3O4 core with single domain and the average grain size around 8–12 nm were prepared by chemical precipitation method. The O/Fe molar ratio of the particle surface was measured by X-ray photoelectron spectroscopy (XPS). The heat effects of stabilizers adsorption on nanoparticles were measured by solution calorimetry. The excess amount of oxygen was possibly the result of the hydroxygen formed on the surface of the nanoparticles. The heat effects showed that compounds containing carboxyl groups can be adsorbed chemically on magnetite by forming chemical bonds. The other stabilizers involving NH-groups, such as polyethylene-imine, can be adsorbed physically. The exothermic value is about half of the former case. Supported by the National Natural Science Foundation of China (Grant No. 50476039), and Guangdong Provincial Department of Science and Technology (Grant No. 2004A10-703001)  相似文献   

16.
In this work, the synthesis of magnetite nanoparticles by two variant chemical coprecipitation methods that involve reflux and aging conditions was investigated. The influence of the synthesis conditions on particle size, morphology, magnetic properties and protein adsorption were studied. The synthesized magnetite nanoparticles showed a spherical shape with an average particle size directly influenced by the synthesis technique. Particles of average size 27 nm and 200 nm were obtained. When the coprecipitation method was used without reflux and aging, the smallest particles were obtained. Magnetite nanoparticles obtained from both methods exhibited a superparamagnetic behavior and their saturation magnetization was particle size dependent. Values of 67 and 78 emu g−1 were obtained for the 27 nm and 200 nm magnetite particles, respectively. The nanoparticles were coated with silica, aminosilane, and silica-aminosilane shell. The influence of the coating on protein absorption was studied using Bovine Serum Albumin (BSA) protein.   相似文献   

17.
The intermetallic cerium compounds Ce3-Pd3Bi4, CePdBi, and CePd2Zn3 were synthesized from the elements in sealed tantalum ampoules in an induction furnace. The compounds were characterized by X-ray powder and single crystal diffraction: CeCo3B2 type (ordered version of CaCu5), P6/mmm, a = 538.4(4), c = 427.7(4) pm, wR2 = 0.0540, 115 F 2 values, 9 variables for CePd2Zn3 and Y3Au3Sb4 type, I \({\bar 4}\)3d, a = 1005.2(2) pm, w R2 = 0.0402, 264 F 2 values, 9 variables for Ce3Pd3Bi4, and MgAgAs type, a = 681.8(1) pm for CePdBi. The bismuthide structures are build up from three-dimensional networks of corner-sharing PdBi4 tetrahedra with Pd–Bi distances of 281 (Ce3Pd3Bi4) and 296?pm (CePdBi), respectively. The cerium atoms are located in larger voids of coordination number 12 (Ce3Pd3Bi4) and 10 (CePdBi). In CePd2Zn3 the cerium atoms fill larger channels within the three-dimensional [Pd2Zn3] network with 18 (6 Pd + 12 Zn) nearest neighbors. The three compounds contain stable trivalent cerium with experimental magnetic moments of μeff = 2.70(2), 2.48(1), and 2.49(1) μB/Ce atom for CePd2Zn3, Ce3Pd3Bi4, and CePdBi, respectively. Susceptibility and specific heat data gave no hint for magnetic ordering down to 2.1?K.  相似文献   

18.
Fe3O4/Au composite particles with core/shell structure were prepared by reduction of Au3+ with hydroxylamine in the presence of an excess of Fe3 O4 as seeds. The resultant colloids, with an average diameter of less than 100 nm, were obtained; the remaining non-reacted Fe3O4 seeds can be removed by treatment with diluted HCl solution. The Fe3O4/Au colloids exhibit a characteristic peak of UV-visible spectra, which largely depend on the size of the particle and the suspension medium. The localized surface plasmon resonance peaks red shift and broaden with increased nanoparticle diameter or increased solvent ionic strength. The optical property is very important in the establishment of means for the detection of biomolecules.  相似文献   

19.
The conductivity and transport number of oxygen ions of Bi2O3-(10, 30, 50) vol % NiO composites are measured using the four-probe and coulomb-volumetric methods at various temperatures. It is shown that the Bi2O3-50 vol % NiO composite exhibits a high mixed ionic-electronic conductivity in the temperature range from 730 to 800°C.  相似文献   

20.
Mechanism by which nanocrystalline Bi4Ti3O12 is formed in thermal treatment of coprecipitated hydroxides was studied. It was shown that the onset of the active formation is correlated with the melting point of the surface phase based on bismuth oxide. The technological synthesis parameters of Bi4Ti3O12, at which crystallite sizes in the range 35–60 nm are provided, were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号