首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured the absorption of different periodically poled lithium niobate crystals when different wavelength beams come through them. The choice of a periodically poled lithium niobate crystal is utilized by a singly resonant oscillator to efficiently generate 3800-nm light when it is pumped by a 1064-nm laser and to generate the 2600-nm signal, and, then, injection seeded at 1550 nm. The temperature-tuning curve and idler output power of the chosen crystal are measured.  相似文献   

2.
Chen YH  Lin YY  Chen CH  Huang YC 《Optics letters》2005,30(9):1045-1047
We report the performance of a periodically poled lithium niobate (PPLN) crystal inside a diode-pumped Nd:YVO4 laser for simultaneous laser Q switching and optical parametric oscillation. The monolithic PPLN crystal consists of two sections, a 1-cm-long 14-microm-period electrode-coated section and a 4-cm-long 30-microm-period section, functioning as a low-voltage Pockels cell and a quasi-phase-matched parametric gain medium, respectively. At a 150-V Q-switching voltage and a 6-kHz switching rate, we measured 25-microJ pulse energy and 4-kW peak power at 1.55 microm with 9-W absorbed diode power.  相似文献   

3.
We report an efficient, visible, nanosecond optical parametric generator of periodically poled lithium niobate pumped at 532 nm by a frequency-doubled, diode-pumped, passively Q -switched, single-mode Nd:YAG laser with 90-muJ pulse energy. The signal radiation is tunable from 637 to 593 nm. The maximum signal-conversion efficiency is 23%. Optical parametric amplification of a He-Ne laser at 632.8 nm is also studied.  相似文献   

4.
The development of an all-solid-state cw laser system for optical absorption measurements of the OH radical in the UV spectral range is described. The tunable output of a 1064-nm external-cavity diode laser is amplified by use of a Nd:doped, double-clad fiber amplifier. The amplified near-IR radiation is frequency doubled by a periodically poled lithium niobate crystal and then quadrupled in a beta-barium borate crystal. The design and operation of the system and measurements of OH absorption in the (2, 0) band of the A(2)?(+)- X(2)? electronic transition are discussed.  相似文献   

5.
Chen YH  Huang YC 《Optics letters》2003,28(16):1460-1462
We demonstrate a low-voltage and fast laser Q-switching by using an electro-optic periodically poled lithium niobate (EO PPLN) crystal. The half-wave voltage measured from the EO PPLN crystal was 0.36 V x d (microm)/L (cm), where d is the electrode separation and L is the electrode length. When a 13-mm-long EO PPLN was used as a laser Q switch at 7-kHz switching rate, we measured an approximately 12-ns pulse width and approximately 0.74-kW laser pulses at 1064-nm wavelength from a diode-pumped Nd:YVO4 laser with continuous 1.2-W pump power at 809-nm wavelength.  相似文献   

6.
This paper demonstrates a compact efficient optical parametric generator internal to a Q-switched diode-end-pumped Nd:YVOquasi-phase-matching, intracavity optical parametric generator, periodically poled MgO-doped lithium niobate (PPMgLN)Project supported by the National Natural Science Foundation of China (Grant Nos 10474071 and 60671036).4265K, 4260F, 4270This paper demonstrates a compact efficient optical parametric generator internal to a Q-switched diode-end-pumped Nd:YVOquasi-phase-matching, intracavity optical parametric generator, periodically poled MgO-doped lithium niobate (PPMgLN)Project supported by the National Natural Science Foundation of China (Grant Nos 10474071 and 60671036).4265K, 4260F, 4270This paper demonstrates a compact efficient optical parametric generator internal to a Q-switched diode-end-pumped Nd:YVOquasi-phase-matching, intracavity optical parametric generator, periodically poled MgO-doped lithium niobate (PPMgLN)Project supported by the National Natural Science Foundation of China (Grant Nos 10474071 and 60671036).4265K, 4260F, 4270This paper demonstrates a compact efficient optical parametric generator internal to a Q-switched diode-end-pumped Nd:YVOquasi-phase-matching, intracavity optical parametric generator, periodically poled MgO-doped lithium niobate (PPMgLN)Project supported by the National Natural Science Foundation of China (Grant Nos 10474071 and 60671036).4265K, 4260F, 4270This paper demonstrates a compact efficient optical parametric generator internal to a Q-switched diode-end-pumped Nd:YVOquasi-phase-matching, intracavity optical parametric generator, periodically poled MgO-doped lithium niobate (PPMgLN)Project supported by the National Natural Science Foundation of China (Grant Nos 10474071 and 60671036).4265K, 4260F, 4270This paper demonstrates a compact efficient optical parametric generator internal to a Q-switched diode-end-pumped Nd:YVO$_{4}$ laser with periodically poled MgO:LiNbO3(PPMgLN). With the Q-switch set at a repetition rate of 25kHz and the PPMgLN crystal operated at room temperature (25\du\,), the intracavity optical parametric generator threshold was reached as a diode pump power of 0.9\,W. A maximum signal output power of 0.34W with a pulse width of 25\,ns and a beam quality factor of 1.4 was obtained at an incident diode power of 3.4\,W, leading to a conversion efficiency of 10{\%} with a slope efficiency of 14.4{\%}. By varying the crystal temperature from 25 to 200\du, the output signal wavelengths were tuned in range of 1506--1565\,nm. Over a 30-minutes interval, the instability of the signal power was measured to be less than 1{\%}. In addition, the threshold pump intensity for the intracavity optical parametric generator is theoretically investigated, and the obtained result is in good agreement with the experimental results.  相似文献   

7.
We report a continuous-wave (cw) 532-nm-pumped singly resonant optical parametric oscillator (SRO) based on periodically poled lithium niobate. The pump source is a commercial 5-W cw diode-pumped, multilongitudinal-mode, intracavity-doubled Nd:YVO(4) laser. Using a four-mirror ring SRO cavity and single-pass pumping, we achieved subwatt internal oscillation threshold, 56% quantum efficiency, and output tuning from 917 to 1266 nm.  相似文献   

8.
Chen YF  Tsai SW  Wang SC  Huang YC  Lin TC  Wong BC 《Optics letters》2002,27(20):1809-1811
We report efficient generation of cw yellow light by use of single-pass sum-frequency mixing from a diode-pumped Nd:YVO(4) dual-wavelength laser with periodically poled lithium niobate. A diode-pumped Nd:YVO(4) dual-wavelength laser is implemented with a three-mirror cavity, and the optimum oscillation condition is obtained from theoretical analysis. We extracted 78 mW of power at 593 nm from 1.2 W at 1064 nm and from 1.0 W at 1342 nm in a beam with excellent quality. The output power could probably be increased to ~92 mW by antireflection coating of the crystal.  相似文献   

9.
Chen T  Wu B  Liu W  Jiang P  Kong J  Shen Y 《Optics letters》2011,36(6):921-923
We experimentally demonstrated an efficient optical parametric oscillator (OPO) with high parametric conversion from 1.0645 to 3.8?μm. An aperiodically poled magnesium oxide doped lithium niobate wafer was designed and fabricated as the nonlinear crystal of the OPO. A linearly polarized acousto-optic Q-switched Nd:YVO4 laser was used as the pump source. High pump-to-idler conversion efficiency of 18.5% was achieved with a slope efficiency of up to 21.5%. When compared with a periodically poled channel fabricated on the same wafer, under the condition of output coupler optimized for the periodically poled lithium niobate based OPO, an improvement of slope efficiency by 28.3% from 15.2% to 19.5% and total efficiency by 12.5% from 13.6% to 15.3% under the highest pump power of 11?W was realized for the pump-to-idler conversion.  相似文献   

10.
We report the first demonstration to our knowledge of 220-ps visible laser generation from passively Q-switched-laser pumped periodically poled lithium niobate (PPLN) in a single-pass, cascaded frequency-conversion process. The monolithic PPLN consists of a 1-cm section for frequency doubling the 1064-nm Nd:YAG pump laser to a 532-nm laser and a subsequent 4-cm section for generating the visible laser in a 532-nm-pumped optical parametric generation (OPG) process. In generating the 622.3-nm OPG signal wavelength we measured a 3.0-microJ/pulse pump threshold at the 1064-nm wavelength, 16% overall efficiency, and 35% slope efficiency at two times threshold. At 10(-6) pump duty cycle and 20-mW average power in the visible, photorefractive damage was not observed at the phase-matching temperature of 40.3 degrees C.  相似文献   

11.
The theoretical analysis and experimental results of the wavelength tunability of a tandem optical parametric oscillator (TOPO) based on a single nonlinear crystal are presented.TOPO is a configuration wherein the signal laser is used as a pump laser to generate secondary optical parametric oscillator (OPO).The cascaded parametric interactions are achieved synchronously in a single-grating-period MgO doped periodically poled lithium niobate (PPMgOLN).Tunable multiple-wavelength mid-infrared (mid-IR) lasers are obtained by changing the temperature of the crystal.When the PPMgOLN crystal with a grating period of 31.2 μm is operated at 148 ℃,the dual OPOs generate an identical mid-IR laser of 2.83 μm.The secondary OPO transforms into an optical parametric amplifier,in which different frequency mixing from the signal laser results in the amplification of the idler laser in the first OPO.TOPO is a useful configuration for multiple laser output,broad tuning range,and high-efficiency mid-IR lasers.  相似文献   

12.
Gorelik PV  Wong FN  Kolker D  Zondy JJ 《Optics letters》2006,31(13):2039-2041
We demonstrate continuous-wave cascaded optical parametric oscillation in which the signal field of the primary parametric oscillator internally pumps the secondary parametric oscillator. Wavelength tuning is achieved with temperature tuning and a fan-out grating structure of a dual-grating periodically poled lithium niobate crystal. Above the secondary threshold the primary signal power is clamped, and all the other output powers increase linearly with the input pump power, in accordance with theory. Cascaded parametric oscillation offers a convenient and efficient way to generate multiple tunable outputs.  相似文献   

13.
郑雄桦  张宝夫  焦中兴  王彪 《中国物理 B》2016,25(1):14208-014208
We present a continuous-wave singly-resonant optical parametric oscillator with 1.5% output coupling of the resonant signal wave, based on an angle-polished Mg O-doped periodically poled lithium niobate(Mg O:PPLN), pumped by a commercial Nd:YVO4laser at 1064 nm. The output-coupled optical parametric oscillator delivers a maximum total output power of 4.19 W with 42.8% extraction efficiency, across a tuning range of 1717 nm in the near- and mid-infrared region.This indicates improvements of 1.87 W in output power, 19.1% in extraction efficiency and 213 nm in tuning range extension in comparison with the optical parametric oscillator with no output coupling, while at the expense of increasing the oscillation threshold by a factor of ~ 2. Moreover, it is confirmed that the finite output coupling also contributes to the reduction of the thermal effects in crystal.  相似文献   

14.
Chiang AC  Lin YY  Wang TD  Huang YC  Shy JT 《Optics letters》2002,27(20):1815-1817
We report a demonstration of distributed-feedback (DFB) optical parametric oscillation (OPO) by writing photorefractive gratings in periodically poled lithium niobate (PPLN). The photorefractive DFB structures were fabricated by illumination of PPLN with UV light through a photomask and by writing of PPLN with UV-light gated interfering laser beams at 532 nm. Evidence of OPO was observed from the spectral narrowing at the 1438.8- and the 619.3-nm signal wavelengths from 1064- and 532-nm-pumped PPLN crystals with the DFB grating periods phase matched to the 4084.5- and 3774-nm idler wavelengths, respectively.  相似文献   

15.
Conroy RS  Rae CF  Dunn MH  Sinclair BD  Ley JM 《Optics letters》1999,24(22):1614-1616
An ultracompact, actively Q -switched optical parametric oscillator (OPO) has been realized that is only 30 mm in length, based on a semimonolithic microchip laser, a quadrupole deflector, and a monolithic periodically poled lithium niobate crystal. The OPO threshold was 550 mW when Nd:YAG was used as the gain material and 590 mW for Nd:Y VO(4), giving signal pulses of as much as 8.7 muJ in energy with Nd:YAG at 1 kHz and 5.9-mu;J pulses with Nd:Y VO(4) at 5 kHz, for 1.2- and 2-W laser diode pumping, respectively. The output was single frequency and could be tuned over the range 1540-3440 nm.  相似文献   

16.
We present a high-average-power, pulsed mid-infrared pump-enhanced singly-resonant optical parametric oscillator (PE-SRO) using a fan-out periodically poled MgO-doped lithium niobate (MgO:PPLN). The pump laser is a Q-switched Nd:YAG laser with a repetition rate of 10 kHz. When the pump power was 22.0 W, a maximum idler output power of 3.4 W at 3781.4 nm was obtained. The thermal guiding effect caused by signal absorption was observed and the crystal heating power was measured with a new method.  相似文献   

17.
We present a 1.5μm continuous-wave (CW) single-frequency intracavity singly resonant optical parametric oscillator (SRO) based on periodically poled lithium niobate (PPLN). The SRO is placed inside the ring cavity of a single-frequency 1.06μm Nd:YVO4 laser pumped by a laser diode. The device delivers a maximum single-frequency output power of 310 mW at a resonant signal wavelength of 1.57 μm. The signal wave could be tuned from 1.57 to 1.59 μm by temperature tuning of PPLN crystal over the range of 130 - 170℃.  相似文献   

18.
We describe what is to our knowledge the first nanosecond periodically poled lithium niobate (PPLN) optical parametric oscillator (OPO) driven by a fiber laser. The source was frequency doubled by a PPLN sample before pumping a second, 20-mm-long, PPLN crystal. The OPO threshold was <10muJ, with pump depletions of as much as 45% and a tunable signal range of 945-1450 nm (1690-4450-nm idler range). We demonstrated 130-nm signal tuning by varying the pump wavelength and doubling crystal's temperature. Also, we achieved 15-nm tuning with all crystals at a constant temperature. The results demonstrate the potential of the fiber laser:PPLN combination for practical, versatile, and tunable sources.  相似文献   

19.
The generation of tunable mid-infrared picosecond laser radiation in a synchronously pumped optical parametric oscillator (OPO) based on periodically poled lithium niobate (PPLN) is reported. Numerical calculations were used to optimize the crystal length in order to balance the parametric gain and the absorption losses in the high-absorption regime of lithium niobate. Due to the numerical results, the system was systematically optimized for the mid-infrared output power. An output power of 1.1?W at 4.5???m and of more than 3?W at 3???m were achieved for 6-ps-long pulses with a repetition rate of 160?MHz and an M2<2.  相似文献   

20.
We report the first, according to our knowledge, experiment for direct third harmonic (TH) generation in periodically poled quadratic crystals. TH radiation of a diode array pumped and acousto-optically Q-switched Nd:YVO4 laser is generated in a 25 mm long periodically poled lithium niobate (PPLN) crystal of period 7.0 μm. A theoretical model is developed that explains the experimental results. It predicts that the efficient phase-matched direct TH generation in periodically poled structures with duty factor 0.5 requires even order quasi-phase matching. In contrast to the similar experiments in bulk birefringence crystals, where direct phase matched TH signal is the sum of the contribution of both intrinsic and cascaded cubic nonlinearities, in periodically poled quadratic crystals only cascaded cubic nonlinearity contributes to the direct phase-matched TH signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号