首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
Molecular simulation results using the exponential-6 intermolecular potential are reported for the phase behaviour of the atomic binary mixtures of neon+xenon, helium+neon, helium+argon and helium+xenon. These binary mixtures exhibit both vapour–liquid and liquid–liquid phase equilibria up to very high pressures. Comparison with experiment indicates good overall agreement. The results indicate that the exponential-6 intermolecular potential is a useful generic potential for molecular simulation.  相似文献   

2.
In the present work, the group contribution with association equation of state (GCA-EoS) is extended to represent phase equilibria in mixtures containing acids, esters, and ketones, with water, alcohols, and any number of inert components. Association effects are represented by a group-contribution approach. Self- and cross-association between the associating groups present in these mixtures are considered. The GCA-EoS model is compared to the group-contribution method MHV2, which does not take into account explicitly association effects. The results obtained with the GCA-EoS model are, in general, more accurate when compared to the ones achieved by the MHV2 equation with less number of parameters. Model predictions are presented for binary self- and cross-associating mixtures.  相似文献   

3.
Summary Excess molar volumes (V E) for binary mixtures of 4-methyl-2-pentanone and some hydrocarbons (cyclohexane, benzene, toluene, andp-xylene) over the whole mole fraction range are determined by density measurement at 293.15 K. The variation of theV E values with the composition for all binary systems is symmetrical except for benezene where the dependence is sigmoid. TheV E values are positive for the binary mixture of the ketone with cyclohexane. For the other hydrocarbons, theV E values are progressively negative over the entire mole fraction range except the system containing benzene, where a few values at higher mole fractions of benzene are positive. The results are discussed in terms of molecular interactions steric effects.
Molare Zusatzvolumina von binären Mischungen von 4-Methyl-2-pentanon und einigen Kohlenwasserstoffen
Zusammenfassung Molare Zusatzvolumina (V E) von binären Mischungen von 4-Methyl-2-pentanon und einigen Kohlenwasserstoffen (Cyclohexan, Benzol, Toluol undp-Xylol) wurden bei 293.15 K durch Dichtemessungen über den gesamten Molenbruchbereich bestimmt. Mit Ausnahme der binären Mischung mit Benzol (sigmoide Kurvenform) ist die Änderung vonV E in Abhängigkeit von der Zusammensetzung der Mischungen symmetrisch. Für das System Keton/Cyclohexan sind dieV E-Werte stark positiv, während sie für die anderen Gemische negativ sind. Eine Ausnahme bildet wieder das System mit Benzol als Kohlenwasserstoff, wo einige Werte bei höheren Molenbrüchen von Benzol positiv sind. Die Ergebnisse werden im Zusammenhang mit intermolekularen Wechselwirkungen und dem Einfluß sterischer Faktoren diskutiert.
  相似文献   

4.
The literature on the physicochemical properties of liquid binary mixtures shows that most such systems exhibit nonlinear behavior. As a result, rigorous data and equations capable of affording a reliable estimate of the behavior of such mixtures are needed.  相似文献   

5.
The present study mainly focuses on the phase behavior modeling of asymmetric binary mixtures. Capability of different mixing rules and volume shift in the prediction of solubility and saturated liquid density has been investigated. Different binary systems of (alkane + alkanol), (alkane + alkane), (carbon dioxide + alkanol), and (carbon dioxide + alkane) are considered. The composition and the density of saturated liquid phase at equilibrium condition are the properties of interest. Considering composition and saturated liquid density of different binary systems, three main objectives are investigated. First, three different mixing rules (one-parameter, two parameters and Wong–Sandler) coupled with Peng–Robinson equation of state were used to predict the equilibrium properties. The Wong–Sandler mixing rule was utilized with the non-random two-liquid (NRTL) model. Binary interaction coefficients and NRTL model parameters were optimized using the Levenberg–Marquardt algorithm. Second, to improve the density prediction, the volume translation technique was applied. Finally, Two different approaches were considered to tune the equation of state; regression of experimental equilibrium compositions and densities separately and spontaneously. The modeling results show that there is no superior mixing rule which can predict the equilibrium properties for different systems. Two-parameter and Wong–Sandler mixing rule show promoting results compared to one-parameter mixing rule. Wong–Sandler mixing rule in spite of its improvement in the prediction of saturated liquid compositions is unable to predict the liquid densities with sufficient accuracy.  相似文献   

6.
The perturbed-chain polar statistical associating fluid theory (PCP-SAFT) equation of state is applied to correlate phase equilibria for mixtures of hydrogen sulfide (H2S) and carbon dioxide (CO2) with alkanes, with aromatics, and with water over wide temperature and pressure ranges. The binary mixtures of H2S–methane and CO2–methane are studied in detail including vapor–liquid, liquid–liquid and fluid–solid phase equilibria. Very satisfying results were obtained for the binary mixtures as well as for the ternary mixture of H2S–CO2–methane using the (constant) interaction parameters of the binary pairs.  相似文献   

7.
8.
The gaseous PVTx properties of ethyl fluoride (HFC-161) + 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea) mixtures were measured at temperatures from 318.180 to 403.205 K and corresponding pressures from 961.3 to 3129.8 kPa using the isochoric method. The uncertainties in the present measurements were estimated to be ±1.5 kPa for pressure and ±6 mK for temperature. On the basis of the experimental PVTx property data, a truncated virial equation of state was developed for the binary HFC-161/227ea system. This equation reproduced the experimental data in the gas phase within ±0.164% in pressure and within ±0.178% in density.  相似文献   

9.
In order to study the intrinsic characteristics and to evaluate the structural variations determined by the addition of a co-solvent to 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) we examined the behaviour of some probes in [bmim][BF4]/co-solvent binary mixtures. The rate constants of the piperidino-catalyzed rearrangement of the Z-phenylhydrazone of the 3-benzoyl-5-phenyl-1,2,4-oxadiazole into the relevant 4-benzoylamino-2,5-diphenyl-1,2,3-triazole as well as the spectrometric properties of pyrene and Nile Red were evaluated. With the same purpose also 1H NMR and conductivity measurements were carried out. By comparison the behaviour of 1-butyl-3-methylimidazolium bis-(trifluoromethylsulfonylimide)/1,4-dioxane mixtures has been analyzed. The whole of data confirms the presence of weak interactions that determine a partially preorganized structure for [bmim][X]. This is perturbed at some degrees by quantity and nature of guest molecules. For example conductivity measurements support the idea that different charged aggregates are present in the [bmim][X]/co-solvent binary mixtures.  相似文献   

10.
A solid-liquid equilibrium (SLE) thermodynamic model based on the SAFT-VR equation of state (EOS) is presented. The model allows for the calculation of solid-liquid phase equilibria in binary mixtures at atmospheric pressure. The fluid (liquid) phase is treated with the SAFT-VR approach, where molecules are modelled as associating chains of tangentially bonded spherical segments interacting via square-well potentials of variable range. The equilibrium between the liquid and solid phase is treated following a standard thermodynamic method that requires the experimental temperature and enthalpy of fusion of the solute. The model is used to calculate the solubilities of naphthalene and acetic acid in common associating and non-associating organic solvents and to determine the solid-liquid phase behaviour of binary mixtures with simple eutectics. The SAFT-VR pure component model parameters are determined by comparison to experimental vapour pressure and saturated liquid density data with the choice of association models according to the nature of the molecule; in addition, an unlike adjustable parameter (kij) is used to model the solutions. The solubility data of naphthalene and acetic acid in both associating and non-associating solvents are reproduced essentially within the accuracy of the experimental measurements. The phase boundaries and the position of the eutectic points in the binary mixtures considered are, in most cases, reproduced with the accuracy commensurate with the industrial applications. Overall, the results presented show that the SAFT-VR EOS can be used with confidence for the prediction of the SLE of binary systems at atmospheric pressure.  相似文献   

11.
Transitiometric investigations of the pure compounds tetracosane and anhydrous caffeine as well as of the mixtures (methane+tetracosanemethane+tetracosane) and (carbon dioxide+caffeinecarbon dioxide+caffeine) are reported for pressures up to 180 MPa. The results are compared with calculations from equations of state; the selection of reference data and the fitting of parameters is explicitly discussed. It is demonstrated how the calculations can aid the interpretation of transitiometric signals, and how the combination of transitiometry and thermodynamic modelling can be used to construct and understand high-pressure phase diagrams of asymmetric mixtures.  相似文献   

12.
A completely analytical equation of state for pure hard chain fluids, derived on the basis of perturbation theory and reported in our previous work, is applied for the calculation of pVT properties and the prediction of vapour–liquid equilibria of n-alkanes and n-perfluoroalkanes. The molecules are treated as a chain formed from freely joined spheres which interact via an extended site-site square-well potential. The molecular parameters of compounds are obtained from the experimental compressibility factor data above the critical temperature. These parameters are capable of relatively satisfactory prediction of the vapour–liquid equilibrium coexistence curves of compounds. Linear relationships have been found between the potential parameters of fluids and their molecular weight, which make it possible to predict the pVT data and vapour–liquid phase equilibria of heavier compounds.  相似文献   

13.
Isothermal vapor–liquid equilibrium data for the binary system hydrogen sulfide+carbonyl sulfide were measured in the temperature range from 232 to 293 K using the static-synthetic technique. From the isothermal Px data, the azeotropic conditions were derived. The critical line of this system was visually detected in a flow apparatus. Interaction parameters for this binary system were fitted simultaneously to all the experimental VLE and critical data for the Predictive Soave–Redlich–Kwong group contribution equation of state.  相似文献   

14.
Afkhami A  Bahram M 《Talanta》2005,66(3):712-720
In this paper a new and very simple method was developed for the simultaneous determination of binary and ternary mixtures, without prior separation steps. This method is based on the mean centering of ratio spectra. The mathematical explanation of the procedure is illustrated. After modeling procedure, the method has been successfully applied to the simultaneous analysis of binary mixtures of mefnamic acid and paracetamol and ternary mixtures of acetylsalysilic acid, ascorbic acid and paracetamol. The analytical characteristics of the method such as detection limit, accuracy, precision, relative standard deviation (R.S.D.) and relative standard error (R.S.E.) was calculated. The results showed that the proposed method is simple, rapid, accurate and precise method for analysis of binary and ternary mixtures.  相似文献   

15.
In this communication, new experimental data on the solubility of n-hexane, cyclo-hexane and iso-octane in pure water are reported. The data have been measured using a static-analytic technique that takes advantage of a Rolsi™ sampling device in the temperature range of 298–353 K and at pressures up to 0.5 MPa. The experimental data measured in this work at 298 K have been compared with some selected data from the literature and good agreement is found. A group contribution plus association equation of state, namely the GCA-EoS, is used to model the phase equilibrium of water + hydrocarbon (C2 to n-C6, cy-C6, i-C4 and i-C8) system. The predictions of the model are found in good agreement with the experimental data measured in this work and some selected data from the literature.  相似文献   

16.
The hole lattice quasichemical group-contribution model (HM) has been applied to described liquid-liquid, liquid-liquid-vapour and vapour-liquid equilibria at elevated and high pressures in binary and ternary mixtures containing CO2, water, alkanols, paraffinic and aromatic hydrocarbons. An estimation of the concentration of alkanol monomers in the binaries with CO2 has been performed. The results of modeling by the HM EOS and the Associated Perturbed Anisotropic Chain Theory (APACT) are compared. In most cases both EOS give satisfactory agreement with experimental data.  相似文献   

17.
Thirty laterally fluorosubstituted new 4-isothiocyanato-, 4-cyano-, 4-fluoro- and 4-(1,1,1-trifluorometoxy)-4′-(4-alkylphenyl)tolanes have been synthesised and their phase transition temperatures and enthalpies and electric permittivity have been measured. These data have been analysed together with data for earlier prepared similar compounds and with recently prepared analogously substituted 4″-alkyl-terphenyls. It was shown that some di-, tri- and tetra-fluorosubstituted 4-isothiocyanato- and 4-cyano-4′-(4-alkylphenyltolanes) are very useful components for the formulation of high birefringence (Δn up to 0.5 measured at 589 nm) and large temperature range nematic mixtures for photonic applications, especially in the infra-red, GHz and THz range of electromagnetic radiation. Three ways of formulation of high birefringence mixtures were proposed.  相似文献   

18.
The simplified PC-SAFT equation of state has been applied to liquid–liquid, vapor–liquid and solid–liquid equilibria for mixtures containing 1- or 2-alkanols with alkanes, aromatic hydrocarbons, CO2 and water. For the alkanols we use generalized pure compound parameters. This means that two of the physical pure compound parameters, m (segment number) and σ (segment diameter), are obtained from linear extrapolations, since m and 3, increase linearly with respect to the molar mass, and moreover, the two association parameters (association energy and association volume) were assumed to be constant for all alkanols. Only the dispersion energy is fitted to experimental data. Thus it is possible to estimate parameters for several 1- and 2-alkanols. The final aim is to develop a group contribution approach for PC-SAFT which is suitable for complex compounds, considering that the motivation of this project is to obtain a thermodynamic model which can be used in the development of sophisticated products such as pharmaceuticals, polymers, detergents or food ingredients. One of the severe limitations in applying SAFT-type equations of state to these compounds is that the procedure for obtaining the pure compound parameters is usually based on fitting to saturated vapor pressure and liquid density data over an extended temperature range. However, such data are rarely available for complex compounds. To verify the new pure compound parameters, comparisons to ordinary optimized alkanol parameters, where all five pure compound parameters were fitted to experimental liquid density and vapor pressure data, were made. The results show that the new generalized alkanol parameters from this work perform at least as well as other alkanol parameter sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号