首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Bulking up: The thermal barrier to rearrangement of a vic‐disulfoxide is significantly increased through steric buttressing about the (O)S? S(O) bond. Whereas the title compounds represent the most thermally stable vic‐disulfoxides known to date, they also undergo a novel photomediated epimerization at room temperature (see scheme).

  相似文献   


6.
7.
The bond stretch isomer 1,3-diphosphacyclobutane-2,4-diyl 1 was transformed photochemically to give the previously unknown 2,4-diphosphabicyclo[1.1.0]butane 2 , which itself can be converted thermally into gauche-1,4-diphosphabutadiene 3 . The crystal structures of these three energy-rich valence isomers of 1,2-diphosphete have been determined. R=SiMe3; Mes*=2,4,6-tBu3C6H2.  相似文献   

8.
9.
The reaction of [ClP(μ‐PMes*)]2 ( 1 ) with the Lewis acid GaCl3 yielded a hitherto unknown tetraphosphabicyclo[1.1.0]butan‐2‐ium salt, [Mes*P4(Cl)Mes*][GaCl4] ( 3 [GaCl4]), which incorporates a positively charged phosphonium center within its bicyclic P4 scaffold. The formation of the title compound was studied by means of low‐temperature NMR experiments. This led to the identification of an intermediate cyclotetraphosphenium cation, which was trapped by reaction with dimethylbutadiene (dmb). All of the compounds were fully characterized by experimental and computational methods.  相似文献   

10.
Access to 1,3-functionalized azetidines through a diversity-oriented approach is highly sought-after for finding new applications in drug-discovery. To this goal, strain-release-driven functionalization of azabicyclo[1.1.0]-butane (ABB) has generated significant interest. Through appropriate N-activation, C3-substituted ABBs are shown to render tandem N/C3-fucntionalization/rearrangement, furnishing azetidines; although, modalities of such N-activation vis-à-vis N-functionalization remain limited to selected electrophiles. This work showcases a versatile cation-driven activation strategy of ABBs. And capitalizes on the use of Csp3 precursors amenable to forming reactive (aza)oxyallyl cations in situ. Herein, N-activation leads to formation of a congested C−N bond, and effective C3 activation. The concept was extended to formal [3+2] annulations involving (aza)oxyallyl cations and ABBs, leading to bridged bicyclic azetidines. Besides the fundamental appeal of this new activation paradigm, operational simplicity and remarkable diversity should engender its prompt use in synthetic and medicinal chemistry.  相似文献   

11.
12.
Bicyclo[1.1.0]butanes (BCBs) are increasingly valued as intermediates in ‘strain release’ chemistry for the synthesis of substituted four membered rings and bicyclo[1.1.1]pentanes, with applications including bioconjugation processes. Variation of the BCB bridgehead substituents can be challenging due to the inherent strain of the bicyclic scaffold, often necessitating linear syntheses of specific BCB targets. Here we report the first palladium catalyzed cross-coupling on pre-formed BCBs which enables a ‘late stage’ diversification of the bridgehead position, and the conversion of the resultant products into a range of useful small ring building blocks.

Bicyclo[1.1.0]butanes (BCBs) are valuable precursors to four-membered rings and bicyclo[1.1.1]pentanes, and useful bioconjugation agents. We describe a versatile approach to access 1,3-disubstituted BCBs, which are otherwise challenging to prepare.  相似文献   

13.
With the aim of generalizing the structure–properties relationship of bending heterocyclic molecules that undergo prominent photoinduced structural planarization (PISP), a series of new dihydrodibenzo[ac]phenazine derivatives in which one nitrogen atom is replaced by oxygen ( PNO ), sulfur ( PNS ), selenium ( PNSe ), or dimethylmethanediyl ( PNC ) was strategically designed and synthesized. Compounds PNO , PNS , and PNSe have significantly nonplanar geometries in the ground state, which undergo PISP to give a planarlike conformer and hence a large emission Stokes shift. A combination of femtosecond early relaxation dynamics and computational approaches established an R*→I* (intermediate)→P* sequential kinetic pattern for PNS and PNSe , whereas PNO undergoes R*→P* one-step kinetics. The polarization ability of the substituted heteroatoms, which is in the order O<S<Se, correlates with their increase in π conjugation, and hence the Stokes shift of the emission is in the order PNO < PNS < PNSe . Compound PNSe with the largest PISP barrier was shown to be a highly sensitive viscosity probe. Further evidence for heteroatom-harnessing PISP is given by PNC , in which the dimethylmethanediyl substituent lacks lone pair electrons for π extension, showing the normal emission of the bent structure. The results led to the conclusion that PISP is ubiquitous in dihydrodibenzo[ac]phenazines, for which the driving force is elongation of the π delocalization to gain stabilization in the excited state.  相似文献   

14.
The synthesis of highly strained bicyclic phosphirane and phosphirene iron-tetracarbonyl complexes, that is, complexes with 2-aza-1-phosphabicyclo[n.1.0]alkanes and -alkenes (n = 3-5), is explored by using intramolecular cycloaddition of an in situ generated electrophilic phosphinidene complex, [R(iPr)NP=Fe(CO)(4)], to its C=C- and C[triple chemical bond]C-containing R substituent. Saturated bicyclic complexes 7 a-c with n = 4-2 are remarkably stable, as illustrated by the X-ray crystal structure for 7 b (n=3), yet all readily undergo retroaddition to react with phenylacetylene. Shuttling of the phosphinidene iron complex between two equivalent C=C groups is demonstrated for a 1-butene-substituted 2-aza-1-phosphabicyclo[3.1.0]hexane by selective (1)H NMR magnetization transfer from the phosphirane protons to the olefinic protons. Even the more strained unsaturated bicycles 17 a,b (n = 4,3) are surprisingly stable as illustrated by the X-ray crystal structure for 17 a (n = 4), but the smaller phosphabicyclo[3.1.0]hex-5-ene (17 c, n = 2) dimerizes to tricyclic 19 with a unique ten-membered heterocyclic ring; an X-ray crystal structure is reported. Like their saturated analogues also the bicyclic phosphirenes readily undergo retroaddition as shown by the reaction of their phosphinidene iron moiety with phenylacetylene.  相似文献   

15.
16.
17.
18.
19.
Herein, we develop a new approach to directly access architecturally complex polycyclic indolines from readily available indoles and bicyclo[1.1.0]butanes (BCBs) through formal cycloaddition promoted by commercially available Lewis acids. The reaction proceeded through a stepwise pathway involving a nucleophilic addition of indoles to BCBs followed by an intramolecular Mannich reaction to form rigid indoline-fused polycyclic structures, which resemble polycyclic indole alkaloids. This new reaction tolerated a wide range of indoles and BCBs, thereby allowing the one-step construction of various rigid indoline polycycles containing up to four contiguous quaternary carbon centers.  相似文献   

20.
Design, synthesis and application of benzene bioisosteres have attracted a lot of attention in the past 20 years. Recently, bicyclo[2.1.1]hexanes have emerged as highly attractive bioisosteres for ortho- and meta-substituted benzenes. Herein we report a mild, scalable and transition-metal-free protocol for the construction of highly substituted bicyclo[2.1.1]hexan-2-ones through Lewis acid catalyzed (3+2)-cycloaddition of bicyclo[1.1.0]-butane ketones with disubstituted ketenes. The reaction shows high functional group tolerance as documented by the successful preparation of various 3-alkyl-3-aryl as well as 3,3-bisalkyl bicyclo[2.1.1]hexan-2-ones (26 examples, up to 89 % yield). Postfunctionalization of the exocyclic ketone moiety is also demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号