首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polymorphism of transferrin (Tf) is currently being studied by isoelectric focusing in carrier ampholyte-generated pH gradients, carrier ampholyte-separator pH gradients or in immobilized pH gradients. Details for obtaining reproducible results with each of the three procedures are outlined. The effectiveness of pretreatment of serum samples with ferrous/ferric salts is discussed, and incubation times optimized after spectrophotometric measurement of the monoferric Tf conversion. Most of the presently available commercial batches of carrier ampholytes do not reliably discriminate the six common TfC subtypes. Resolution of C1, C3 and C2 was achieved by adding 20 to 90 mM HEPES slab gels prepared with various carrier ampholytes. Isoelectric focusing in carrier ampholyte-separator pH gradients cannot be recommended as a standard typing procedure because the results strongly depend on the batch of carrier ampholytes. Tf subtype resolution was only achieved by using isoelectric focusing in immobilized pH gradients with pH slopes reliably reproducible from one experiment to another. Two major shortcomings of immobilized pH gradients are a marked tendency to protein precipitation at the application site and an interaction of proteins with the charged matrix. A protocol for Tf subtyping in immobilized pH gradients is described, based on prior desialylation of samples instead of pretreatment with iron. Sample entry into the matrix was optimized by addition of 5 mM Tris to the gels, and initially running them at low voltage. Recommendations are provided for the application of Tf typing for paternity testing.  相似文献   

2.
The apparent diffusion coefficients of proteins in carrier ampholyte isoelectric focusing (CA-IEF) and in immobilized pH gradients (IPGs) are strongly dependent on the amount of buffering ions present in the system. However, whereas in CA-IEF increased levels of ampholytes facilitate diffusion, in IPGs they strongly quench it. It is concluded that a protein in an IPG matrix is isoelectric but not isoionic, in the sense that it forms a salt with the surrounding ions bound to the polyacrylamide matrix. This salt formation is beneficial as it greatly increases protein solubility at the pI. It is suggested that, when performing zymograms in situ, the IPG gel should contain at least twice the standard amount of Immobiline, so as to keep sharp enzyme bands even with prolonged incubation periods.  相似文献   

3.
4.
Five proteins with molecular mass in excess of 200 kDa were found to adsorb onto gels during isoelectric focusing on immobilized pH gradients (IPGEF). To probe for the mechanism of that adsorption, the homogeneity of the six Immobiline preparations used to make IPGEF gels was tested. Five of these Immobiline preparations appear homogeneous in gel filtration of Sephadex G-10. The sixth Immobiline (pK 9.3) exhibits a minor component eluting ahead of the major peak and comprising less than 4% of the total Immobiline absorbing at 226 nm. The proportion of the minor component increases with column load. Major and minor components when isolated appear to equilibrate with one another. Judging by the results of mass spectrometry, all 6 preparations are free of small aggregates of less than 500-600 Da molecular mass. Ultrafiltration of the Immobiline preparations through a membrane with 500 Da nominal cutoff leads to partial desorption of only 3 of the 5 adsorbed proteins. CHAPS is ineffectual in desorbing the 5 proteins from the IPG gel made with ultrafiltered Immobilines. None of the 6 Immobiline preparations used precipitates ferritin. All large proteins that adsorb onto IPGEF gels in the pH range 4-9.5 also adsorb onto commercial IPGEF gels in the pH range 4-7.  相似文献   

5.
6.
Shim J  Dutta P  Ivory CF 《Electrophoresis》2008,29(5):1026-1035
The effects of mobility corrections on carrier ampholytes are studied at various ampholyte concentrations to understand protein behavior during IEF. IEF simulations are conducted in the presence of 25 biprotic carrier ampholytes within a pH range of 6-9 after applying the Onsager-Debye-Hückel correction to the carrier ampholytes. Two model proteins with ten charge states but without ionic strength corrections are allowed to focus under an electric field of 300 V/cm in a 1 cm long channel. The IEF simulation results show that higher ionic strengths (50 - 100 mM) cause significant changes in the transient movement as well as the final focused profiles of both ampholytes and proteins. The time required for a single, well-defined peak to form increases with ionic strength when Onsager corrections are applied to the carrier ampholytes. For a particular ampholyte concentration, the space-averaged conductivity does not change during the final focusing stage, but the magnitude of space averaged conductivity is different for different ampholyte concentration. The simulation results also reveal that at steady-state ionic strength profiles remain flat throughout the channel except at the locations of proteins where a significant change in ampholyte concentration is obtained.  相似文献   

7.
A simple method of flattening and/or expanding of pH gradients in isoelectric focusing is described for any pH interval desired: to modify pH gradients near one electrode a paper strip soaked with carrier ampholytes is applied onto the gel close to the opposite electrode. In order to flatten central parts of pH intervals paper strips are applied onto the gel at both electrodes. Conditions and criteria (e.g. amount and pH intervals of carrier ampholytes, width and localization of the paper strip, separation period) for optimization are presented with PhastSystem using ready-made gels with three different pH intervals and pI marker proteins (Pharmacia). Examples utilizing erythrocyte lysates are presented.  相似文献   

8.
The use of quasi-isoelectric buffers consisting of narrow pH cuts of carrier ampholytes (NC) has been investigated to limit protein adsorption on capillary walls during capillary zone electrophoresis experiments. To quantify protein adsorption on the silica surface, a method derived from that of Towns and Regnier has been developed. alpha-Lactalbumin (14 kDa, pI 4.8) and alpha-chymotrypsinogen A (25 kDa, pI 9.2) have been used as model proteins. Acidic narrow pH cuts of carrier ampholytes (NC, pH 3.0) obtained from fractionation of Serva 4-9 carrier ampholytes were used as BGE in bare-silica capillaries, and allowed to decrease significantly protein adsorption, as compared to experiments performed with classical formate buffer. The use of NC as BGE appeared to be as efficient as the use of polydimethylacrylamide coating to prevent protein adsorption. This increase of protein recovery when using NC was attributed to the interaction of carrier ampholytes with the silica surface, leading to a shielding of the capillary wall.  相似文献   

9.
A protocol is described for monitoring the heterogeneity of end products of organic syntheses yielding amphoteric molecules containing two or more amino groups. This protocol was found to be a valuable aid in synthesis of carrier ampholytes for specific isoelectric focusing applications. This method does not depend on the ampholytes themselves to dictate the conditions under which they are analyzed. Carrier ampholytes have been found previously to be insoluble in picric acid and the insolubility property was not dependent upon the pI of individual ampholyte species. This insolubility property was exploited in the protocol. Immobilized pH gradients were used to focus the carrier ampholytes. Ampholytes were then visualized in situ by picric acid precipitation. The data shows that the protocol is useful for analyzing the results of chemical manipulations for enhancing the resolution of carrier ampholytes. A direct relationship was shown between carrier ampholyte heterogeneity as demonstrated by this protocol and the resolution of complex protein mixtures in isoelectric focusing gels. Picric acid formed visible precipitates with a variety of organic compounds which contained more than one amino group.  相似文献   

10.
The protonation of an aqueous solution of two ampholytes AH and BH next to a gel buffered by immobilized acid moieties IH has been studied by finite element simulation in an iterative scheme. A ten species model has been formulated, taking into account transient diffusion and equilibrium kinetics of the two amphoteric species AH and BH, of water and of the immobilized species IH. This model has been developed to illustrate the pH evolution between an ampholyte solution and an Immobiline gel, and to study the influence of the Immobiline concentration on protons and ampholyte distributions. It has been demonstrated that a minimum initial Immobiline concentration of 10(-2) M is necessary to maintain the pH in the gel in contact with a closed chamber, when the difference between the isoelectric points of AH and BH is 4 and when the initial concentration of the ampholytes in solution is in the micromolar range. This approach provides a first theoretical framework for the recently developed Off-Gel trade mark electrophoresis.  相似文献   

11.
The synthesis of carrier ampholytes suitable for isoelectric focusing is described. The mixture of hexamethylenetetramine (HMTA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA) and pentaethylenehexamine (PEHA) ampholytes closely resembles commercial Ampholine, and covers the pH range 3-9.5. We have been able to detect focused ampholytes in a gel slab, taking advantage of their different refractive indices, and to assess their relative amounts along the pH gradient. PEHA ampholytes contain up to 20% of chromophoric structures, with two UV peaks at 368 and 315 nm, in a pH-dependent equilibrium, associated with a very weak nitrogen function having a pK of 1.1. This could be the pK6 of the last amino group in PEHA. However, NMR spectra failed to reveal any nitrogen heterocyclic structure formed during the synthesis. This mixture of ampholytes exhibits good conductivity, produces smooth pH gradients and allows sharp protein separations in the pH range 3-9.5. Their synthesis is very easy and their cost is extremely low. Their availability sould make feasible large-scale preparative isoelectric focusing, and attract more interest to continuous-flow techniques, where large amounts of ampholytes are required.  相似文献   

12.
Tracy NI  Ivory CF 《Electrophoresis》2004,25(12):1748-1757
Recombinant proteins are often produced as isoforms with different kinds and amounts of post-translational modifications that alter their function. Isoelectric focusing in shallow pH gradients, less than 0.5 pH/cm, might be capable of fractionating these isoforms. The synthetic carrier ampholyte mixtures typically used to generate these pH gradients are expensive and may adversely interact with proteins. Using defined buffers instead of synthetic carrier ampholytes reduces these problems. We tested two defined buffer systems in a vortex-stabilized electrophoresis device to see if they could form shallow pH gradients useful for separating isoforms. These pH gradients were formed by pouring a two-component concentration gradient. The poured gradients were smooth, reproducible, and stable for at least 1.5 h at 5 kV. One poured gradient focused 20 mg of cytochrome c. A second poured gradient separated glucose oxidase from amyloglucosidase. The breadth of the amyloglucosidase band indicates that the shallow, poured pH gradients can only partially separate protein isoforms at 10 kV. Proteins with pI < 0.2 pH units apart will have overlapping bands in these shallow, poured pH gradients.  相似文献   

13.
We report on capillary isoelectric focusing-mass spectrometry (CIEF-MS) of complex peptide mixtures in the absence of carrier ampholytes. Furthermore, the use of low concentrations of carrier ampholytes as mere spacers is investigated. Carrier ampholytes are complex mixtures of amphoteric compounds with high buffering capacity. Since all peptides are amphoteric compounds by themselves, the use of carrier ampholytes may be superfluous to establish a stable pH gradient in CIEF analysis of protein digests. Our research showed that when carrier ampholytes are omitted, the analyte ions are not focused at their isoelectric point. The analytes are charged, leading to electrophoretic mobility uncharacteristic for CIEF. The method was tested for a five-protein-mixture at 0.02 mg/mL per protein and 0.05 mg/mL per protein. At the lower concentration, the analytes were stacked during the focusing process in only a limited length of the capillary. Therefore, the higher concentration led to better separation efficiency. It was found that at low concentration (0.20%) the carrier ampholytes could work as spacers. Though it led to sensitivity losses of 15-45%, this was compensated by the higher separation efficiencies seen. The method was evaluated with an eight-protein-mixture, of which all could be identified after performing MS/MS.  相似文献   

14.
Salts formed from strong acids and bases (e.g. NaCl, Na2SO4, Na2HPO4), present in a protein sample applied to an immobilized pH gradient (IPG) gel, induce protein modification (oxidation of iron moiety in hemoglobin) already at low levels (5 mM) and irreversible denaturation (precipitation) at higher levels (greater than 50 mM). This effect is due to production of strongly alkaline cationic and strongly acidic anionic boundaries formed by the splitting of the salt's ion constituents, as the protein zone is not and can not be buffered by the surrounding gel until it physically migrates into the gel matrix. Substitution of "strong" salts in the sample zone with salts formed by weak acids and bases, e.g.. Tris-acetate, Tris-glycinate, Good's buffers such as (N-[2-acetamido]-2-iminodiacetic acid (ADA), (2-[(2-amino-2-oxoethyl)-amino] ethanesulfonic acid (ACES), (3-[N-morpholino]propane sulfonic acid (MOPS), essentially abolishes both phenomena, oxidation and irreversible denaturation. Suppression of "strong" salt's effects is also achieved by adding, to the sample zone, carrier ampholytes in amounts proportional to the salt present (e.g. by maintaining a salt: carrier ampholytes molar ratio of at least 1:1). This suppression is due to the strong buffering power of the added carrier ampholytes, able to counteract drastic pH changes in the two moving boundaries. A reduction of these deleterious effects of strong salts is also achieved when the IPG run is performed at low voltage for a prolonged time (4 h at 500 V instead of only 1 h at 500 V, before switching to high-voltage settings). Guidelines are given for trouble-free IPG operations.  相似文献   

15.
M Poux  J Bertrand 《Electrophoresis》1990,11(11):907-912
Free-flow isoelectric focusing was adapted to preparative scale separations and chemical engineering methods were used to describe the main mechanisms operating in the apparatus. A mixture of human serum albumin (pI 4.6) and beta-lactoglobulin (pI 5.22) was separated in pH gradients, generated with carrier ampholytes of different origin and covering the pH ranges 4-6.5, 3.5-5, 4-5.5 and 4.5-5.0. Best results were obtained in the pH 4-5.5 range. The experimental results have validated the results obtained with a numerical model.  相似文献   

16.
Erythrocyte acid phosphatase (EAP), esterase D (ESD) and phosphoglucomutase (PGM) phenotypes among the erythrocyte enzyme types of blood groups are surveyed and a modified cellulose acetate membrane isoelectric focusing (CAM-IEF) method for their exploration is described. The phenotyping procedures are usually classified as either equilibrium or non-equilibrium IEF. Equilibrium IEF, which is based on differences in pI values, includes three methods: (i) a narrow pH range of carrier ampholytes, (ii) a relatively narrow pH range of carrier ampholytes containing chemical separators and (iii) immobilized pH gradient gels. Among the three methods, immobilized pH gradients provides a better resolution of isozymes. Conversely, the disadvantages of immobilized pH gradients include longer focusing times and complex gel preparations. Moreover, immobilized pH gradients are unsuitable for stain analysis because of the insensitivity of PGM1 detection. A hybrid IEF system and a commercial immobilized pH gradient dry plate have overcome these problems. However, EAP typing is extremely expensive and ESD typing is not well distinguished by hybrid IEF. As each method has both merits and demerits, the most suitable technique should be selected based on the kind of erythrocyte enzyme types and sample conditions. On the other hand, non-equilibrium IEF is a rapid method because isozymes are detected on the basis of their charge differences under non-equilibrium conditions. Moreover, the appropriate addition separators increases the charge difference and provides a good resolution within a shorter time. Addition of more separators produces a narrow pH range in the gel and takes a substantially longer time to reach the optimum pH range for charge difference.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Mosher RA  Thormann W 《Electrophoresis》2008,29(5):1036-1047
The impact of the systematic variation of either DeltapK(a) or mobility of 140 biprotic carrier ampholytes on the conductivity profile of a pH 3-10 gradient was studied by dynamic computer simulation. A configuration with the greatest DeltapK(a) in the pH 6-7 range and uniform mobilities produced a conductivity profile consistent with that which is experimentally observed. A similar result was observed when the neutral (pI = 7) ampholyte is assigned the lowest mobility and mobilities of the other carriers are systematically increased as their pI's recede from 7. When equal DeltapK(a) values and mobilities are assigned to all ampholytes a conductivity plateau in the pH 5-9 region is produced which does not reflect what is seen experimentally. The variation in DeltapK(a) values is considered to most accurately reflect the electrochemical parameters of commercially available mixtures of carrier ampholytes. Simulations with unequal mobilities of the cationic and anionic species of the carrier ampholytes show either cathodic (greater mobility of the cationic species) or anodic (greater mobility of the anionic species) drifts of the pH gradient. The simulated cationic drifts compare well to those observed experimentally in a capillary in which the focusing of three dyes was followed by whole column optical imaging. The cathodic drift flattens the acidic portion of the gradient and steepens the basic part. This phenomenon is an additional argument against the notion that focused zones of carrier ampholytes have no electrophoretic flux.  相似文献   

18.
Immobilized pH gradients use a series of weak acrylamido acids and bases (Immobiline) to create a pH gradient along the separation axis. These buffers can be degraded in water by two mechanisms: (i) hydrolysis of the amido bond, with generation of free acrylic acid and either an amino acid or a diamine; (ii) autopolymerization to oligomers and/or n-mers. In order to check for these degradation products, different capillary zone electrophoresis systems for analysis of all Immobilines have been devised. The acidic compounds are resolved in 100 mM acetate, pH 4.0, whereas the alkaline Immobilines are separated in 50 mM phosphate buffer, pH 7.7 (or pH 7.2 for the weaker species). Polymers of alkaline Immobilines are resolved in 50 mM phosphate buffer, pH 2.5, in 1% Ficoll-400. All Immobilines are detected underivatized, by their adsorption at 214 or 254 nm. A calibration curve has been constructed for quantification of acrylic acid contamination. As little as 1 mol% of acrylic acid contamination in Immobiline solutions can be detected, with a sensitivity limit below 0.2 mM (at the injection port).  相似文献   

19.
The impact of initial sample distribution on separation and focusing of analytes in a pH 3–11 gradient formed by 101 biprotic carrier ampholytes under concomitant electroosmotic displacement was studied by dynamic high-resolution computer simulation. Data obtained with application of the analytes mixed with the carrier ampholytes (as is customarily done), as a short zone within the initial carrier ampholyte zone, sandwiched between zones of carrier ampholytes, or introduced before or after the initial carrier ampholyte zone were compared. With sampling as a short zone within or adjacent to the carrier ampholytes, separation and focusing of analytes is shown to proceed as a cationic, anionic, or mixed process and separation of the analytes is predicted to be much faster than the separation of the carrier components. Thus, after the initial separation, analytes continue to separate and eventually reach their focusing locations. This is different to the double-peak approach to equilibrium that takes place when analytes and carrier ampholytes are applied as a homogenous mixture. Simulation data reveal that sample application between two zones of carrier ampholytes results in the formation of a pH gradient disturbance as the concentration of the carrier ampholytes within the fluid element initially occupied by the sample will be lower compared to the other parts of the gradient. As a consequence thereof, the properties of this region are sample matrix dependent, the pH gradient is flatter, and the region is likely to represent a conductance gap (hot spot). Simulation data suggest that sample placed at the anodic side or at the anodic end of the initial carrier ampholyte zone are the favorable configurations for capillary isoelectric focusing with electroosmotic zone mobilization.  相似文献   

20.
North RY  Vigh G 《Electrophoresis》2008,29(5):1077-1081
The operational pH value of a buffering membrane used in an isoelectric trapping separation is determined by installing the membrane as the separation membrane into a multicompartmental electrolyzer operated in the two-separation compartment configuration. A 3相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号