首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetic and equilibrium aspects of three different poly(ethylene oxide) alkylethers (C12E5, C12E7, C14E7) near a flat cellulose surface are studied. The equilibrium adsorption isotherms look very similar for these surfactants, each showing three different regions with increasing surfactant concentration. At low surfactant content both the headgroup and the tail contribute to the adsorption. At higher surface concentrations, lateral attraction becomes prominent and leads to the formation of aggregates on the surface. The general shape of the isotherms and the magnitude of the adsorption resemble mostly those for hydrophilic surfaces, but both the ethylene oxide and the aliphatic segments determine affinity for the surface. The adsorption and desorption kinetics are strongly dependent on surfactant composition. At bulk concentrations below the CMC, the initial adsorption rate is attachment-controlled. Above the CMC, the micellar diffusion coefficient and the micellar dissociation rate play a crucial role. For the most hydrophilic surfactant, C12E7, both parameters are relatively large. In this case, the initial adsorption rate increases with increasing surfactant concentration, also above the CMC. For C12E5 and C14E7 there is no micellar contribution to the initial adsorption rate. The initial desorption kinetics are governed by monomer detachment from the surface aggregates. The desorption rate constants scale with the CMC, indicating an analogy between the surface aggregates and those formed in solution.  相似文献   

2.
With the aim of being able to manipulate the processes involved in interfacial catalysis, we have studied the effects of a mixture of nonionic/anionic surfactants, C12E6/LAS (1:2 mol %), on the adsorption and surface mobility of a lipase obtained from Thermomyces lanuginosus (TLL). Surface plasmon resonance (SPR) and ellipsometry were used to analyze the competitive adsorption process between surfactants and TLL onto hydrophobic model surfaces intended to mimic an oily substrate for the lipase. We obtained the surface diffusion coefficient of a fluorescently labeled TLL variant on silica silanized with octadecyltrichlorosilane (OTS) by fluorescence recovery after photobleaching (FRAP) on a confocal laser scanning microscope. By means of ellipsometry we calibrated the fluorescence intensity with the surface density of the lipase. The TLL diffusion was measured at different surface densities of the enzyme and at two time intervals after coadsorption with different concentrations of C12E6/LAS. The surfactant concentrations were chosen to represent concentrations below the critical micelle concentration (CMC), in the CMC region, and above the CMC. The apparent TLL surface diffusion was extrapolated to infinite surface dilution, D0. We found that the presence of surfactants strongly modulated the surface mobility of TLL: with D(0) = 0.8 x 10(-11) cm2/s without surfactants and D0 = 13.1 x 10(-11) cm2/s with surfactants above the CMC. The increase in lipase mobility on passing the CMC was also accompanied by a 2-fold increase in the mobile fraction of TLL. SPR analysis revealed that surface bound TLL was displaced by C12E6/LAS in a concentration-dependent manner, suggesting that the observed increase in surface mobility imparts bulk-mediated diffusion and so-called rebinding of TLL to the surface. Our combined results on lipase/surfactant competitive adsorption and lipase surface mobility show how surfactants may play an important role in regulating interfacial catalysis from physiological digestion to technical applications such as detergency.  相似文献   

3.
We have constructed a model to predict the properties of non-ionic (alkyl-ethylene oxide) (C(n)E(m)) surfactants, both in aqueous solutions and near a silica surface, based upon the self-consistent field theory using the Scheutjens-Fleer discretisation scheme. The system has the pH and the ionic strength as additional control parameters. At high ionic strength, the solvent quality for the surfactant head groups is affected, which changes both the bulk and the adsorption behavior of the surfactant. For example, with increasing ionic strength, the CMC drops and the aggregation increases. Surfactants adsorb above the critical surface association concentration (CSAC). The CSAC is a function of the surfactant and the surface properties. Therefore, the CSAC varies with both the ionic strength and the pH. We predict that with increasing ionic strength, the CSAC will first slightly increase but then drop substantially. The charge on the surface is pH dependent, and as the head groups bind through H-bonding to the silanol groups, the CSAC increases with increasing pH. We focus on adsorption/desorption transitions for the surfactants and compare these to the experimental data. Both the equilibrium predictions and the consequences for the kinetics of adsorption follow experimental findings. Our results show that molecularly realistic models can reveal a much richer interfacial behavior than anticipated from more generic models.  相似文献   

4.
A series of ethoxylated sodium monooctyl sulfosuccinates [E(n)SMOSS] and ethoxylated sodium monolauryl sulfosuccinates [E(n)SMLSS] have different units of ethylene oxide (n = 9, 14, 23) were synthesized. The surface and thermodynamic properties of these surfactants have been compared with sodium dioctyl sulfosuccinate surfactant (SDOSS) as a commonly used surfactant. The surface tension measurements at 25, 35, 45, and 55°C were used to determine of the critical micelle concentration (CMC) and surface active properties of these surfactants. The effect of the ethylene oxide (EO) unit and the alkyl chain length on the surface properties for the prepared surfactants was studied. The results show that the ethoxylated sodium monoalkyl sulfosuccinates generally have lower values of CMC than that of sodium dioctyl sulfosuccinate. The values of surface active parameters indicate that the ethoxylated sodium monooctyl sulfosuccinates and ethoxylated sodium monolauryl sulfosuccinates surfactants have adsorption properties better than the sodium dioctyl sulfosuccinate surfactant as a resulted presence of ethylene oxide in molecules of the prepared surfactants. The thermodynamic parameters show that the (EO) unites in the chemical structure of ethoxylated sodium monoalkyl sulfosuccinate surfactants improve their micellization and adsorption properties.  相似文献   

5.
We present a new methodology to determine the rate-limiting adsorption kinetics mechanism (diffusion-controlled vs mixed diffusion-barrier controlled), including deducing the kinetics parameters (the diffusion coefficient, D, and the energy-barrier parameter, beta), from the experimental short-time dynamic surface tension (DST) data. The new methodology has the following advantages over the existing procedure used to analyze the experimental DST data: (a) it does not require using a model for the equilibrium adsorption isotherm, and (b) it only requires using the experimental short-time DST data measured at two initial surfactant bulk solution concentrations. We apply the new methodology to analyze the experimental short-time DST data of the following alkyl poly(ethylene oxide), CiEj, nonionic surfactants: C12E4, C12E6, C12E8, and C10E8 measured using the pendant-bubble apparatus. We find that for C12E4 and C12E6, the effect of the energy barrier on the overall rate of surfactant adsorption can be neglected for surfactant bulk solution concentrations below their respective critical micelle concentrations (CMCs), and therefore, that the rate-limiting adsorption kinetics mechanism for C12E4 and C12E6 is diffusion-controlled at any of their premicellar surfactant bulk solution concentrations. On the other hand, for C12E8 and C10E8, we find that their respective CMC values are large enough to observe a significant effect of the energy barrier on the overall rate of surfactant adsorption. In other words, for C12E8 and C10E8, the rate-limiting adsorption kinetics mechanism shifts from diffusion-controlled to mixed diffusion-barrier controlled as their premicellar surfactant bulk solution concentrations increase. We test the new methodology by predicting the short-time DST profiles at other initial surfactant bulk solution concentrations, and then comparing the predicted DST profiles with those measured experimentally. Very good agreement is obtained for the four CiEj nonionic surfactants considered. We also compare the results of implementing the new methodology with those of implementing the existing procedure, and conclude that using a model for the equilibrium adsorption isotherm can lead not only to different values of D and beta, but it can also lead to a completely different determination of the rate-limiting adsorption kinetics mechanism. Since the new methodology proposed here does not require using a model for the equilibrium adsorption isotherm, we conclude that it should provide a more reliable determination of the rate-limiting adsorption kinetics mechanism, including the deduced kinetics parameters, D and beta.  相似文献   

6.
The suspending behaviors of multiple-wall carbon nanotubes (MWNTs), including pristine MWNTs (p-MWNTs) and acid-mixture-treated MWNTs (MWNTCOOH), stabilized by cationic single-chain surfactant, dodecyltrimethylammonium bromide (DTAB), and cationic gemini surfactant hexyl-alpha,beta-bis(dodecyldimethylammonium bromide) (C 12C 6C 12Br 2) were studied systematically. The surfactant structure influences the suspendability of MWNTs dramatically as well as the surfactant adsorption behavior on the nanotubes. Although both the surfactants can disperse the MWNTs effectively, they actually show different stabilizing ability. DTAB is not capable of stabilizing these two MWNTs below critical micelle concentration (CMC). However, C 12C 6C 12Br 2 can suspend both the nanotubes effectively even well below its CMC. Moreover, the adsorption of these two surfactants reaches equilibrium at twice the CMC with the original MWNT concentration of 2 mg/mL, 2 mM for C 12C 6C 12Br 2, and 30 mM for DTAB. After the adsorption equilibrium, the maximum amounts of the two suspended MWNTs in C 12C 6C 12Br 2 solution are about twice as much as those in DTAB solution. The strong hydrophobic interaction among the C 12C 6C 12Br 2 molecules and between the C 12C 6C 12Br 2 molecules and the nanotubes as well as the high charge capacity of C 12C 6C 12Br 2 lead to its much stronger adsorption ability on the MWNTs and result in its superior stabilizing ability for the MWNTs in aqueous phase. The gemini surfactant provides a possibility to effectively stabilize the MWNTs in aqueous solutions even at very low surfactant concentration well below its CMC.  相似文献   

7.
Polyvinyl alcohol (PVA) and polyacrilic acid (PAA) were used as hydrophobic adsorbent surfaces at 25°C for two nonionic surfactants, namely, tetradecyl polyoxyethylenated monolaurate [La(EO)14] and tetradecyl polyoxyethylenated monooleate [Ol(EO)14], and two anionic surfactants, namely, sodium oleic sulfonate [OlSO3Na] and sodium dodecyl benzene sulfonate [SDBS]. Surface tension measurements were performed to determine the critical micelle concentration (CMC) and the adsorption isotherms of the tested surfactants. All the tested surfactants display L-shape isotherms except that of OlSO3Na onto PVA. No adsorption behavior has been shown for the anionic SDBS onto both PVA and PAA. The adsorption data show higher adsorption affinity for all the tested nonionic surfactants onto PAA than onto PVA while the investigated anionic surfactant OlSO3Na possesses close values of Γmax. The study reveals that the nature of the polymer surface as adsorbent besides the molecular structure of the surfactant defined the types and mechanisms of adsorption.  相似文献   

8.
The adsorption of linear polyoxyethylene (POE) alcohol surfactants of the form CxEy onto the surface of a Sphingomonas sp. has been examined. For this study, the alkyl chain length (x) was fixed at 12 and the POE chain length (y) was varied, with y = 4, 7, 9, 10, and 23 ethylene oxide units. Langmuirian isotherms were observed for C12E4 and C12E23, and more complex isotherms were observed for the three intermediate POE chain length surfactants, with C12E7 and C12E9 exhibiting strong S-shaped isotherms. All isotherms showed plateaus near the critical micelle concentration (CMC) with the plateau decreasing with increasing POE chain length. A simple multi-interaction isotherm is proposed that models the sorption isotherm as the sum of two interactions. The first interaction describes monolayer adsorption, whereas the second interaction describes lateral interactions between sorbed surfactant molecules and the formation of surface aggregates. Varying ratios of these two interactions as a function of POE chain length gives rise to the variety of observed isotherm shapes. Results of the isotherm analysis suggest that lateral interactions dominate for surfactants with low POE chain lengths, and the lateral interactions decrease as the POE chain length is increased.  相似文献   

9.
本文研究了非离子型表面活性剂对聚硅氧烷阴离子型乳液的耐电解质稳定性的影响。十二烷基聚氧乙烯醚C_12H_25(OCH_2CH_2)_nOH(n=6.3,C_12E_6.3)能提高乳液的氯化镁临界凝聚浓度。乳液的表面化学性质和乳液粒子表面上表面活性剂的组成表明C_12E_6.3与十二烷基苯磺酸之间存在着协同作用,组成了混合界面膜。根据DLVO理论对C_12E_6.3提高乳液耐电解质凝聚稳定性进行了解释。  相似文献   

10.
We report on the development of a self-consistent field model that describes the competitive adsorption of nonionic alkyl-(ethylene oxide) surfactants and nonionic polymer poly(ethylene oxide) (PEO) from aqueous solutions onto silica. The model explicitly describes the response to the pH and the ionic strength. On an inorganic oxide surface such as silica, the dissociation of the surface depends on the pH. However, salt ions can screen charges on the surface, and hence, the number of dissociated groups also depends on the ionic strength. Furthermore, the solvent quality for the EO groups is a function of the ionic strength. Using our model, we can compute bulk parameters such as the average size of the polymer coil and the surfactant CMC. We can make predictions on the adsorption behavior of either polymers or surfactants, and we have made adsorption isotherms, i.e., calculated the relationship between the surface excess and its corresponding bulk concentration. When we add both polymer and surfactant to our mixture, we can find a surfactant concentration (or, more precisely, a surfactant chemical potential) below which only the polymer will adsorb and above which only the surfactant will adsorb. The corresponding surfactant concentration is called the CSAC. In a first-order approximation, the surfactant chemical potential has the CMC as its upper bound. We can find conditions for which CMC < CSAC . This implies that the chemical potential that the surfactant needs to adsorb is higher than its maximum chemical potential, and hence, the surfactant will not adsorb. One of the main goals of our model is to understand the experimental data from one of our previous articles. We managed to explain most, but unfortunately not all, of the experimental trends. At the end of the article we discuss the possibilities for improving the model.  相似文献   

11.
In this article, the validity and accuracy of the CS-MT model is evaluated by using it to model the micellization behavior of seven nonionic surfactants in aqueous solution. Detailed information about the changes in hydration that occur upon the self-assembly of the surfactants into micelles was obtained through molecular dynamics simulation and subsequently used to compute the hydrophobic driving force for micelle formation. This information has also been used to test, for the first time, approximations made in traditional molecular-thermodynamic modeling. In the CS-MT model, two separate free-energy contributions to the hydrophobic driving force are computed. The first contribution, gdehydr, is the free-energy change associated with the dehydration of each surfactant group upon micelle formation. The second contribution, ghydr, is the change in the hydration free energy of each surfactant group upon micelle formation. To enable the straightforward estimation of gdehydr and ghydr in the case of nonionic surfactants, a number of simplifying approximations were made. Although the CS-MT model can be used to predict a variety of micellar solution properties including the micelle shape, size, and composition, the critical micelle concentration (CMC) was selected for prediction and comparison with experimental CMC data because it depends exponentially on the free energy of micelle formation, and as such, it provides a stringent quantitative test with which to evaluate the predictive accuracy of the CS-MT model. Reasonable agreement between the CMCs predicted by the CS-MT model and the experimental CMCs was obtained for octyl glucoside (OG), dodecyl maltoside (DM), octyl sulfinyl ethanol (OSE), decyl methyl sulfoxide (C10SO), decyl dimethyl phosphine oxide (C10PO), and decanoyl-n-methylglucamide (MEGA-10). For five of these surfactants, the CMCs predicted using the CS-MT model were closer to the experimental CMCs than the CMCs predicted using the traditional molecular-thermodynamic (MT) model. In addition, CMCs predicted for mixtures of C10PO and C10SO using the CS-MT model were significantly closer to the experimental CMCs than those predicted using the traditional MT model. For dodecyl octa(ethylene oxide) (C12E8), the CMC predicted by the CS-MT model was not in good agreement with the experimental CMC and with the CMC predicted by the traditional MT model, because the simplifying approximations made to estimate gdehydr and ghydr in this case were not sufficiently accurate. Consequently, we recommend that these simplifying approximations only be used for nonionic surfactants possessing relatively small, non-polymeric heads. For MEGA-10, which is the most structurally complex of the seven nonionic surfactants modeled, the CMC predicted by the CS-MT model (6.55 mM) was found to be in much closer agreement with the experimental CMC (5 mM) than the CMC predicted by the traditional MT model (43.3 mM). Our results suggest that, for complex, small-head nonionic surfactants where it is difficult to accurately quantify the hydrophobic driving force for micelle formation using the traditional MT modeling approach, the CS-MT model is capable of making reasonable predictions of aqueous micellization behavior.  相似文献   

12.
We propose a direct method to measure the equilibrium and dynamic surface properties of surfactant solutions with very low critical micellar concentrations (CMC) using a pendant drop tensiometer. We studied solutions of the nonionic surfactant hexaethylene glycol monododecyl ether (C(12)E(6)) and of the ionic surfactant hexadecyl trimethyl ammonium bromide (CTAB) with concentrated sodium bromide (NaBr). The variation of the surface tension as a function of surface concentration is obtained easily without the need for complex models and compares well with the result obtained using the Gibbs adsorption equation. The time-dependent surface concentration of each surfactant was also measured, and the adsorption process was found to be diffusion-controlled. The diffusion coefficients of the two surfactants can be extracted from the data and were found in very good agreement with literature values, further validating the method.  相似文献   

13.
The surface adsorption of n-dodecyl phosphocholine (C12PC) has been characterised by a combined measurement of surface tension and neutron reflectivity. The critical micellar concentration (CMC) was found to be 0.91 mM at 25 degrees C in pure water. At the CMC, the limiting area per molecule (A(cmc)) was found to be 52+/-3 A2 and the surface tension (gamma(cmc)) to be ca. 40.0+/-0.5 mN/m. The parallel study of chain isomer n-hexadecyl phosphocholine (C16PC) showed a decrease of the CMC to 0.012 mM and a drop of gamma(cmc) to 38.1+/-0.5 mN/m. However, A(cmc) for C16PC was found to be 54+/-3 A2, showing that increase in alkyl chain length by four methylene groups has little effect on A(cmc). The almost constant A(cmc) suggested that the limiting area per molecule was determined by the bulky PC head group. It was further found that the surface tension and related key physical parameters did not vary much with temperature, salt addition, solution pH or any combination of these, thus showing that surface adsorption and solution aggregation from PC surfactants is largely similar to the zwitterionic betaine surfactants and is distinctly different from ionic and non-ionic surfactants. The thickness of the adsorbed monolayers measured from both dC12hPC and dC16hPC was found to be 20-22 A at the CMC from neutron reflectivity. Neither A(cmc) nor layer thickness varied with alkyl chain length, indicating that as the alkyl chain length became longer it was further tilted away from the surface normal direction and the layer packing density increased. It was also observed that the thickness of the layer varied little with surfactant concentration, indicating that the average conformational orientation of the alkyl chain remained unchanged against varying surface coverage.  相似文献   

14.
The formation of half-cylindrical surfactant aggregates at the graphite/aqueous solution interface is templated by an ordered monolayer of molecules disposed parallel to the graphite basal plane. Beyond a critical alkyl chain length, monolayer formation is effectively irreversible. Since enthalpic interactions in this template-monolayer region cannot be resolved with adequate accuracy by the traditional adsorption calorimetric methods, we applied a novel method, pulsed-flow calorimetry, for simultaneous measurement of the material balance and the enthalpy balance in this high-affinity region. For the three nonionic surfactants studied, n-octyl beta-D-glucoside (C(8)G(1)), dimethyl-n-decylamine oxide (C(10)DAO), and n-octyl tetraethylene glycol monoether (C(8)E(4)), the adsorption was found to be strongly exothermic and effectively irreversible at low adsorbate densities, and the differential heat of adsorption markedly decreased with increasing surface coverage in this region. This deviation from the ideal adsorption behavior was attributed to intermolecular interactions within the adsorption layer rather than to surface heterogeneity of the graphite basal planes. A thermodynamic consistency test clearly demonstrated that pulsed-flow calorimetry is a unique experimental method for the study of nonreversible adsorption phenomena at solid/solution interfaces, representing an excellent tool to complement traditional methods, e.g., frontal-flow and titration adsorption calorimetry. Studies by the frontal-flow method revealed that aggregation on top of the surfactant monolayer was endothermic and reversible.  相似文献   

15.
The adsorption of the surface-active protein hydrophobin, HFBII, and the competitive adsorption of HFBII with the cationic, anionic, and nonionic surfactants hexadecyltrimethylammonium bromide, CTAB, sodium dodecyl sulfate, SDS, and hexaethylene monododecyl ether, C(12)E(6), has been studied using neutron reflectivity, NR. HFBII adsorbs strongly at the air-water interface to form a dense monolayer ~30 ? thick, with a mean area per molecule of ~400 ?(2) and a volume fraction of ~0.7, for concentrations greater than 0.01 g/L, and the adsorption is independent of the solution pH. In competition with the conventional surfactants CTAB, SDS, and C(12)E(6) at pH 7, the HFBII adsorption totally dominates the surface for surfactant concentrations less than the critical micellar concentration, cmc. Above the cmc of the conventional surfactants, HFBII is displaced by the surfactant (CTAB, SDS, or C(12)E(6)). For C(12)E(6) this displacement is only partial, and some HFBII remains at the surface for concentrations greater than the C(12)E(6) cmc. At low pH (pH 3) the patterns of adsorption for HFBII/SDS and HFBII/C(12)E(6) are different. At concentrations just below the surfactant cmc there is now mixed HFBII/surfactant adsorption for both SDS and C(12)E(6). For the HFBII/SDS mixture the structure of the adsorbed layer is more complex in the region immediately below the SDS cmc, resulting from the HFBII/SDS complex formation at the interface.  相似文献   

16.
Water-soluble surfactants based on rosin acids were synthesized from condensed rosin acid-formaldehyde. This was completed by esterification of series of rosin acid formaldehyde resins with poly(ethylene glycol) having different molecular weights to produce series of rosin esters. The structure of the produced resins was determined by infrared and 1HNMR analysis. The molecular weight of the produced surfactants was determined by gel permeation chromatography (GPC) technique. The surface properties of the prepared surfactants were determined by measuring the surface tension at different temperatures. The surface tension, critical micelle concentration (CMC), and surface activities were determined at different temperatures. Surface parameters such as surface excess concentration (Γmax), the area per molecule at interface (Amin), and the effectiveness of surface tension reduction (πCMC) were determined from the adsorption isotherms of the prepared surfactants. Some thermodynamic data for the adsorption process were calculated and are discussed. The dispersion efficiency of the prepared surfactants as petroleum oil spill dispersants was determined and correlated with the surface activity, concentrations of the prepared surfactants and type of petroleum crude oil.  相似文献   

17.
Usually in nonionic surfactant aqueous systems of the C(n)E(m) type, a lamellar phase occurs over a wide temperature and concentration range. For some C(n)E(m) surfactants, multi-lamellar vesicle (MLV) formation has been observed when the lamellar phase is subjected to shear flow. This communication reports the shear flow behavior at different shear rate values of a C(n)E(m) (where "n" is 12 and "m" is 3) aqueous system at 34 °C. The typical transient viscosity behavior of the shear-induced MLV formation in C(12)E(3)/D(2)O at 50 wt% of surfactant has been observed. The MLV formation is confirmed by time-resolved rheo-small angle light scattering (SALS) experiments. The experimental data show an intermediate structure that has been attributed to a multi-lamellar cylinders (MLCs).  相似文献   

18.
Precipitation or coprecipitation of polyelectrolytes has been largely investigated. However, the precipitation of polyelectrolytes via addition of charged and non‐charged surfactants has not been systematically studied and reported. Consequently, the aim of this work is to investigate the effect of different surfactants (anionic, cationic, non‐charged and zwitterionic) on the precipitation of cationic and anionic polymethylmethacrylate polymers (Eudragit). The surfactants effect has been investigated as a function of their concentration. Special attention has been dedicated to the CMC range and to the colloidal characterization of the formed dispersions. Moreover, the effect of salt (NaCl) and pH was also addressed. It is pointed out that non‐ionic and zwitterionic surfactants do not interact with charged Eudragit E100 and L100. For oppositely charged Eudragit E100/SDS and Eudragit L100/CTAB, precipitation occurs, and the obtained dispersions have been characterized in terms of particle size distribution and zeta potential. It was established that the binding of SDS molecules to Eudragit E100 polymer chains is made through the negative charges of the surfactant heads under the CMC value whereas binding of CTAB to Eudragit L100 chains is made at a CTAB concentration 5 times above its CMC. For Eudragit E100/SDS system, a more acidic medium induces aggregation. A same result was observed for the Eudragit L100/CTAB at a more basic pH. Moreover, it was observed that increasing salt concentration (higher than 100 mM) led to aggregation as generally observed for polycations/anionic surfactant systems.  相似文献   

19.
Dynamic light scattering (DLS) and fluorescence recovery after pattern photobleaching (FRAPP) were used to study the interaction of low molecular weight poly(ethylene glycol) (PEG) with micelles of two different surfactants: tetradecyldimethyl aminoxide (C(14)DMAO, zwitterionic) and pentaethylene glycol n-dodecyl monoether (C(12)E(5), non-ionic). By using an amphiphilic fluorescent probe or a fluorescent-labeled PEG molecule, FRAPP experiments allowed to follow the diffusion of the surfactant-polymer complex either by looking at the micelle diffusion or at the polymer diffusion. Experiments performed with both fluorescent probes gave the same diffusion coefficient showing that the micelles and the polymer form a complex in dilute solutions. Similar experiments showed that PEG interacts as well with pentaethylene glycol n-dodecyl monoether (C(12)E(5)).  相似文献   

20.
CMC型高分子表面活性剂在固/液界面上的吸附   总被引:11,自引:1,他引:11  
在润湿、乳化、洗涤、分散等应用领域中,表面活性剂分子在界面上的吸附状态对性能有重要影响.另一方面,在化学驱油过程中,表面活性剂分子在氧化物矿物上的吸附是引起表面活性剂损失的主要原因,表面活性剂的损耗量大,将降低采收率及经济效益[1].高分子表面活性剂作为一种多功能的新型表面活性剂在许多领域有广阔的应用前景,但对其性能研究尚处于起步阶段,特别是结构复杂的高分子双亲性共聚物,在吸附、乳化等方面研究尚少报导.羧甲基纤维素系列高分子表面活性剂是采用独特的超声波辐照技术合成的嵌段型共聚物,具有优良的表/界面活性[2],可望用…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号