首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2 and Ar ambient. X-ray diffraction indicated that growth of ZrN with a preferred (111) orientation over Si(100) was achieved. The resistivity of the films varies from 200 μΩcm to 15 μΩcm depending on the N2 content in the working gas. The square resistance of the films deposited on 96% Al2O3 ceramic wafers is stable below 300 °C. Received: 17 June 1996/Accepted: 9 December 1996  相似文献   

2.
Thermal crystallization of a double layer porous Si film creates a monocrystalline Si film with a thin separation layer between the Si film and the reusable starting wafer. The process enables transfer of thin monocrystalline Si films to foreign substrates, whereby devices may be formed before or after separation of the film. Sub-micrometer thick films are almost compact, while films with a thickness of several μm contain voids, and are therefore termed “quasi-monocrystalline”. Internal voids strongly enhance optical absorption by light scattering. The hole mobility is 78 cm2 V-1 s-1 at a p-type starting wafer resistivity of 0.05 Ω cm. Received: 24 March 1999 / Accepted: 29 March 1999 / Published online: 5 May 1999  相似文献   

3.
SnO2 thin films have been deposited on glass substrates by pulsed Nd:YAG laser at different oxygen pressures, and the effects of oxygen pressure on the physical properties of SnO2 films have been investigated. The films were deposited at substrate temperature of 500°C in oxygen partial pressure between 5.0 and 125 mTorr. The thin films deposited between 5.0 to 50 mTorr showed evidence of diffraction peaks, but increasing the oxygen pressure up to 100 mTorr, three diffraction peaks (110), (101) and (211) were observed containing the SnO2 tetragonal structure. The electrical resistivity was very sensitive to the oxygen pressure. At 100 mTorr the films showed electrical resistivity of 4×10−2 Ω cm, free carrier density of 1.03×1019 cm−3, mobility of 10.26 cm2 V−1 s−1 with average visible transmittance of ∼87%, and optical band gap of 3.6 eV.  相似文献   

4.
Transparent conducting antimony-doped tin oxide (SnO2:Sb) films were deposited on organic substrates by r.f. magnetron-sputtering. Polycrystalline films with a resistivity of ≈ 6.5×10-3 Ω cm, a carrier concentration of≈ 1.2×1020 cm-3 and a Hall mobility of ≈ 9.7 cm2 v-1 s-1 were obtained. The average transmittance of these films reached 85% in the wavelength range of the visible spectrum. Received: 20 April 2001 / Accepted: 23 July 2001 / Published online: 17 October 2001  相似文献   

5.
The effect of pulsed ion-beam annealing on the surface morphology, structure, and composition of single-crystal Si(111) wafers implanted by chromium ions with a dose varying from 6 × 1015 to 6 × 1016 cm−2 and on subsequent growth of silicon is investigated for the first time. It is found that pulsed ion-beam annealing causes chromium atom redistribution in the surface layer of the silicon and precipitation of the polycrystalline chromium disilicide (CrSi2) phase. It is shown that the ultrahigh-vacuum cleaning of the silicon wafers at 850°C upon implantation and pulsed ion-beam annealing provides an atomically clean surface with a developed relief. The growth of silicon by molecular beam epitaxy generates oriented 3D silicon islands, which coalesce at a layer thickness of 100 nm and an implantation dose of 1016 cm−2. At higher implantation doses, the silicon layer grows polycrystalline. As follows from Raman scattering data and optical reflectance spectroscopy data, semiconducting CrSi2 precipitates arise inside the silicon substrate, which diffuse toward its surface during growth.  相似文献   

6.
Present p-type ZnO films tend to exhibit high resistivity and low carrier concentration, and they revert to their natural n-type state within days after deposition. One approach to grow higher quality p-type ZnO is by codoping the ZnO during growth. This article describes recent results from the growth and characterization of Zr–N codoped p-type ZnO thin films by pulsed laser deposition (PLD) on (0001) sapphire substrates. For this work, both N-doped and Zr–N codoped p-type ZnO films were grown for comparison purposes at substrate temperatures ranging between 400 to 700 °C and N2O background pressures between 10−5 to 10−2 Torr. The carrier type and conduction were found to be very sensitive to substrate temperature and N2O deposition pressure. P-type conduction was observed for films grown at pressures between 10−3 to 10−2 Torr. The Zr–N codoped ZnO films grown at 550 °C in 1×10−3 Torr of N2O show p-type conduction behavior with a very low resistivity of 0.89 Ω-cm, a carrier concentration of 5.0×1018 cm−3, and a Hall mobility of 1.4 cm2 V−1 s−1. The structure, morphology and optical properties were also evaluated for both N-doped and Zr–N codoped ZnO films.  相似文献   

7.
Silicon diodes with a p +-n junction made in a 48-μm-thick phosphorus-doped silicon epilayer (resistivity ρ = 30 Ω cm) grown on antimony-doped Si(111) wafers (ρ = 0.01 Ω cm) are studied. The diodes are irradiated by high-energy (3.5 MeV) electrons with fluences from 5 × 1015 to 2 × 1016 cm−2. It is shown that the conventional equivalent circuit of the diode that consists of a parallel RC network and a series-connected resistor inadequately describes the dependence of the dielectric loss tanδ on variable current frequency f in the range 1 × 102–3 × 107 Hz. Another equivalent circuit is suggested that includes not only the capacitance and resistance of the n-base (the latter increases because radiation-induced defects are compensated for by shallow donors) but also the f dependence of the capacitance of the space-charge region, which is due to retarded charge exchange between deep-level radiation-induced defects.  相似文献   

8.
The excitation mechanism of rare-earth ions in silicon nanocrystals   总被引:2,自引:0,他引:2  
A detailed investigation on the excitation mechanisms of rare-earth (RE) ions introduced in Si nanocrystals (nc) is reported. Silicon nanocrystals were produced by high-dose 80-keV Si implantation in thermally grown SiO2 followed by 1100 °C annealing for 1 h. Subsequently some of the samples were implanted by 300-keV Er, Yb, Nd, or Tm at doses in the range 2×1012–3×1015 /cm2. The energy was chosen in such a way to locate the RE ions at the same depth where nanocrystals are. Finally an annealing at 900 °C for 5 min was performed in order to eliminate the implantation damage. These samples show intense room-temperature luminescence due to internal 4f shell transitions within the RE ions. For instance, luminescence at 1.54 μm and 0.98 μm is observed in Er-doped nc, at 0.98 μm in Yb-doped nc, at 0.92 μm in nc and two lines at 0.78 μm and 1.65 μm in Tm-doped nc. Furthermore, these signals are much more intense than those observed when RE ions are introduced in pure SiO2 in the absence of nanocrystals, demonstrating the important role of nanocrystals in efficiently exciting the REs. It is shown that the intense nc-related luminescence at around 0.85 μm decreases with increasing RE concentration and the energy is preferentially transferred from excitons in the nc to the RE ions which, subsequently, emit radiatively. The exact mechanism of energy transfer has been studied in detail by excitation spectroscopy measurements and time-resolved photoluminescence. On the basis of the obtained results a plausible phenomenological model for the energy transfer mechanism emerges. The pumping laser generates excitons within the Si nanocrystals. Excitons confined in the nc can either give their energy to an intrinsic luminescent center emitting at around 0.85 μm nor pass this energy to the RE 4f shell, thus exciting the ion. The shape of the luminescence spectra suggests that excited rare-earth ions are not incorporated within the nanocrystals and the energy is transferred at a distance while they are embedded within SiO2. Rare-earth excitation can quantitatively be described by an effective cross section σeff taking into account all the intermediate steps leading to excitation. We have directly measured σeff for Er in Si nc obtaining a value of ≈2×10−17 cm2. This value is much higher than the cross section for excitation through direct photon absorption (8×10−21 cm2) demonstrating that this process is extremely efficient. Furthermore, the non-radiative decay processes typically limiting rare-earth luminescence in Si (namely back-transfer and Auger) are demonstrated to be absent in Si nc further improving the overall efficiency of the process. These data are reported and their implications. Received: 9 April 1999 / Accepted: 10 April 1999 / Published online: 2 June 1999  相似文献   

9.
Aluminum-doped p-type polycrystalline silicon thin films have been synthesized on glass substrates using an aluminum target in a reactive SiH4+Ar+H2 gas mixture at a low substrate temperature of 300 °C through inductively coupled plasma-assisted RF magnetron sputtering. In this process, it is possible to simultaneously co-deposit Si–Al in one layer for crystallization of amorphous silicon, in contrast to the conventional techniques where alternating metal and amorphous Si layers are deposited. The effect of aluminum target power on the structural and electrical properties of polycrystalline Si films is analyzed by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and Hall-effect analysis. It is shown that at an aluminum target power of 100 W, the polycrystalline Si film features a high crystalline fraction of 91%, a vertically aligned columnar structure, a sheet resistance of 20.2 kΩ/ and a hole concentration of 6.3×1018 cm−3. The underlying mechanism for achieving the semiconductor-quality polycrystalline silicon thin films at a low substrate temperature of 300 °C is proposed.  相似文献   

10.
A tin-doped indium oxide (ITO) film on a SiO2 substrate was prepared by photo-irradiation of spin-coated nanoparticles using a Xe excimer lamp and a KrF excimer laser. The effects of the excimer lamp and the excimer laser on the resistivity, mobility, and carrier concentration of the film were investigated. To better understand how to control the microstructure of the film, we investigated the effect of thickness on the resistivity of a film prepared by the two-step process, and found that the resistivity was higher in a thicker film. Using two-step irradiation plus one-step KrF irradiation in N2 at room temperature, we produced an ITO film with lowest resistivity of any in this study. The electrical resistivity of this film was 5.94×10−4 Ω cm. On the other hand, when using a simple thermal process, the resistivity of a film sintered at 500°C in N2 was 4.10×10−3 Ω cm. The differences in resistivity are discussed on the basis of the microstructure of the films using atomic force microscopy and Hall measurements.  相似文献   

11.
SrBi2Ta2O9 (SBT) ferroelectric thin films with different preferred orientations were deposited by pulsed laser deposition (PLD). Several methods have been developed to control the preferred orientation of SBT thin films. For SBT films deposited directly on Pt/TiO2/SiO2/Si substrates and in situ crystallized at the deposition temperature, the substrate temperature has a significant impact on the orientation and the remnant polarization (Pr) of the films; a higher substrate temperature benefits the formation of (115) texture and larger grain size. The films deposited on Pt/TiO2/SiO2/Si substrates at 830 °C are (115)-oriented and exhibit 2Pr of 6 μC/cm2. (115)- and (200)-predominant films can be formed by using a La0.85Sr0.15CoO3 (LSCO) buffer layer or by annealing amorphous SBT films deposited on Pt/TiO2/SiO2/Si substrates at 450 °C using rapid thermal annealing (RTA). These films exhibit good electric properties; 2Pr of the films are up to 12 μC/cm2 and 17 μC/cm2, respectively. The much larger 2Pr of the films deposited on the LSCO buffer layer and of the films obtained by RTA than 2Pr of the films deposited on Pt/TiO2/SiO2/Si substrates at 830 °C is attributed to a stronger (200) texture. Received: 30 January 2001 / Accepted: 30 May 2001 / Published online: 25 July 2001  相似文献   

12.
Transmission electron microscopy, optical reflection and channeling effect measurements are employed to investigate disorders in 30 keV, high dose (3×1016ions/cm2) and high current (≦5 mA) phosphorus as-implanted silicon with (111), (100), and (110) orientation as a function of temperature rise (100–850°C) by the beam heating effect during implantation. Temperature rise below 400°C results in continuous amorrphous layer formation. This contrasts with results of the recovery into single crystals for temperature rise samples above 500°C, regardless of wafer orientation. Secondary defects (black-dotted defects, dislocation loops and rodlike defects) are formed in singlecrystal recovery samples, having a deeper distribution in (110) wafers and a shallower distribution in (111) and (100) wafers. Rodlike defects observed in 850°C samples are of “vacancy” type and have the largest density in (110) wafers.  相似文献   

13.
(La0.5Sr0.5)CoO3 (LSCO) thin films have been fabricated on silicon substrate by the pulsed laser deposition method. The effects of substrate temperature and post-annealing condition on the structural and electrical properties are investigated. The samples grown above 650°C are fully crystalline with perovskite structure. The film deposited at 700°C has columnar growth with electrical resistivity of about 1.99×10−3 Ω cm. The amorphous films grown at 500°C were post-annealed at different conditions. The sample post-annealed at 700°C and 10−4 Pa has similar microstructure with the sample in situ grown at 700°C and 25 Pa. However, the electrical resistivity of the post-annealed sample is one magnitude higher than that of the in situ grown sample because of the effect of oxygen vacancy. The temperature dependence of resistivity exhibits semiconductor-like character. It was found that post-annealing by rapid thermal process will result in film cracks due to the thermal stress. The results are referential for the applications of LSCO in microelectronic devices.  相似文献   

14.
This paper deals with the implantation of high-energy (1.0–3.0 MeV) atomic and molecular Al+ ions in Si(100) to a fluence of 5×1014 Al atoms/cm2 at room temperature. The molecular effect, i.e. the increase of the displacement yield compared with the sum of the atomic yields, and the damage formation as well as defect behaviour after annealing have been investigated. A detailed experimental study has been made of the evolution of extended secondary defects which form during thermal anneals of Al+ or Al2 + irradiated silicon. The samples have been examined using combined Rutherford backscattering and channeling experiments together with transmission electron microscopy observations. The surface structure of the implanted wafers has been measured by atomic force microscopy. The results for the implantation-induced roughness at the Si surface, resulting from Al+ or Al2 + irradiation at the same energy/atom, total atomic fluence, flux rate, and irradiation temperature, are presented and discussed. Received: 19 August 1999 / Accepted: 20 October 1999 / Published online: 23 February 2000  相似文献   

15.
Polycrystalline higher manganese silicide (MnSi1.73) films with addition of chromium were prepared on thermally oxidized silicon substrates by magnetron sputtering. A cap layer of chromium disilicide was used as the doping source. Both the Seebeck coefficient and the resistivity were strongly dependent on the amount of chromium added to the film. When the thickness ratio of chromium disilicide to manganese silicide increased from 2.4% to 9.8%, the Seebeck coefficient at room temperature decreased from 121 to 100 μV/K. However, the temperature at which the maximum value of the Seebeck coefficient occurred increased from 343 to 633 K. When the thickness ratio was about 2.4%, the resistivity increased to 33×10-3 Ω cm. Otherwise, the resistivity decreased from 13×10-3 to 5.2×10-3 Ω cm by increasing the thickness ratio. As a result, the thermoelectric power factor increased greatly at high temperatures. Several activation energies (0.021–0.383 eV) were observed from the curves of the logarithm of resistivity versus reciprocal temperature. PACS 72.20.Pa; 72.80.Ga; 72.15.Jf; 73.50.Lw; 73.61.Le  相似文献   

16.
We report an experimental investigation of the non-steady-state photoelectromotive force in nanostructured GaN within porous glass and polypyrrole within chrysotile asbestos. The samples are illuminated by an oscillating interference pattern created by two coherent light beams and the alternating current is detected as a response of the material. Dependences of the signal amplitude versus temporal and spatial frequencies, light intensity, and temperature are studied for two wavelengths λ=442 and 532 nm. The conductivity of the GaN composite is measured: σ=(1.1–1.6)×10−10 Ω−1 cm−1 (λ=442 nm, I 0=0.045–0.19 W/cm2, T=293 K) and σ=(3.5–4.6)×10−10 Ω−1 cm−1 (λ=532 nm, I 0=2.3 W/cm2, T=249–388 K). The diffusion length of photocarriers in polypyrrole nanowires is also estimated: L D=0.18 μm.  相似文献   

17.
Non-contact, non-intrusive Photo-Carrier Radiometry (PCR) was used for monitoring nano-depth junctions in industrial-grade silicon wafers. The silicon wafers were implanted with arsenic to the dose of 5E1014 cm-2. The junction depth was in the 30 nm to 100 nm range. Quantitative results for PCR sensitivity to the junction depth and implantation energies are presented. This laser-based carrier-wave technique monitors harmonically photo-excited and recombining carriers and shows great potential advantages for the characterization of multiple semiconductor processes such as ion implantation, ultra shallow junction (USJ) depth determination and other Si wafer process steps.  相似文献   

18.
The results of the spectroscopic analysis of transition strengths for Er3+ ions in a series of Hf:Er:LiNbO3 crystals with variable Hf content and fixed Er content are reported. Unpolarized UV-VIS-NIR absorption spectra, upconversion fluorescence spectra excited at 800 nm, and microsecond time-resolved spectra excited at 400 nm and 800 nm by 800 nm femtosecond laser were measured at room temperature. The HfO2 incorporation has influence on Er3+ radiative lifetimes, and fluorescence branching ratios. For Hf(4 mol %):Er(1 mol %):LiNbO3, Ω2=2.63×10-20 cm2, Ω4=2.86×10-20 cm2, and Ω6=0.72×10-20 cm2. Ω24 is contrary to the Er3+ general trend of Ω246 when the Hf content is below its threshold concentration. In addition, the sum of Ω increases with the Hf content when the HfO2 content below 6 mol % is unfamiliar. The upconversion mechanism is discussed in this work. PACS 71.20.Eh; 77.84.Dy; 42.62.Fi; 42.65.Ky  相似文献   

19.
60 films by means of ionized cluster beam (ICB) deposition. X-ray diffraction (XRD) measurement showed the C60 films to be polycrystalline. The films show negative resistance–temperature coefficients, and their room-temperature resistivity is greater than 102 Ω cm. The films were implanted with 80-keV phosphorus, BBr3, Ar, and He ions, under doses ranging up to 1016 cm-2. The resistivity of the implanted films decreases with increasing doses. n-type electrical conduction was observed for phosphorus-implanted C60 films. The interaction of impinging ions with C60 clusters was found to force the C60 molecules to disintegrate and the films to amorphize. p-type conduction was observed for the C60 films doped with aluminum by simultaneously sputtering aluminum during deposition. C60/Si structures show heterojunction characteristics that can be influenced by light illumination. The photoelectric properties of the films were found to be improved by doping with aluminum. Received: 12 January 1998/Accepted: 24 March 1998  相似文献   

20.
The absorption spectra, fluorescence spectrum and fluorescence decay curve of Nd3+ ions in CaNb2O6 crystal were measured at room temperature. The peak absorption cross section was calculated to be 6.202×10−20 cm2 with a broad FWHM of 7 nm at 808 nm for E//a light polarization. The spectroscopic parameters of Nd3+ ions in CaNb2O6 crystal have been investigated based on Judd-Ofelt theory. The parameters of the line strengths Ω t are Ω 2=5.321×10−20 cm2,Ω 4=1.734×10−20 cm2,Ω 6=2.889×10−20 cm2. The radiative lifetime, the fluorescence lifetime and the quantum efficiency are 167 μs, 152 μs and 91%, respectively. The fluorescence branch ratios are calculated to be β 1=36.03%,β 2=52.29%,β 3=11.15%,β 4=0.533%. The emission cross section at 1062 nm is 9.87×10−20 cm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号