首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Advancing (theta(A)) and receding (theta(R)) contact angles were measured with several probe liquids on the external facets (201), (001), (011), and (110) of macroscopic form I paracetamol crystals as well as the cleaved (internal) facet (010). For the external crystal facets, dispersive surface energies gamma(d) calculated from the contact angles were found to be similar (34 +/- 1 mJ/m(2)), while the polar components varied significantly. Cleaving the crystals exposed a more apolar (010) surface with very different surface properties, including gamma(d) = 45 +/- 1 mJ/m(2). The relative surface polarity (gamma(p)/gamma) of the facets in decreasing order was (001) > (011) > (201) > (110) > (010), which agreed with the fraction of exposed polar hydroxyl groups as determined from C and O 1s X-ray photoelectron spectroscopy (XPS) spectra, and could be correlated with the number of non-hydrogen-bonded hydroxyl groups per unit area present for each crystal facet, based on the known crystal structures. In conclusion, all facets of form I paracetamol crystals examined exhibited anisotropic wetting behavior and surface energetics that correlated to the presence of surface hydroxyl groups.  相似文献   

2.
Spatially resolved surface photovoltage spectroscopy (SRSPS) was employed to obtain direct evidence for highly anisotropic photogenerated charge separation on different facets of a single BiVO4 photocatalyst. Through the controlled synthesis of a single crystal with preferentially exposed {010} facets, highly anisotropic photogenerated hole transfer to the {011} facet of single BiVO4 crystals was observed. The surface photovoltage signal intensity on the {011} facet was 70 times stronger than that on the {010} facets. The influence of the built‐in electric field in the space charge region of different facets on the anisotropic photoinduced charge transfer in a single semiconductor crystal is revealed.  相似文献   

3.
Crystallization of 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (1), previously found to produce six conformational polymorphs from solution, on single-crystal pimelic acid (PA) substrates results in selective and oriented growth of the metastable "YN" (yellow needle) polymorph on the (101)(PA) faces of the substrate. Though the freshly cleaved substrate crystals expose (101)(PA) and (111)(PA) faces, which are both decorated with [101](PA) ledges that could serve as nucleation sites, crystal growth of YN occurs on only (101)(PA). Goniometry measurements performed with an atomic force microscope reveal that the (001)(YN) plane contacts (101)(PA) with a crystal orientation [100](YN)//[010](PA) and [010](YN)//[101](PA). A geometric lattice analysis using a newly developed program dubbed GRACE (geometric real-space analysis of crystal epitaxy) indicates that this interfacial configuration arises from optimal two-dimensional epitaxy and that among the six polymorphs of 1, only the YN polymorph, in the observed orientation, achieves reasonable epitaxial match to (101)(PA). The geometric analysis also reveals that none of the polymorphs, including YN, can achieve comparable epitaxial match with (111)(PA), consistent with the absence of nucleation on this crystal face. In contrast, sublimation of 1 on cleaved succinic acid (SA) substrates, which expose large (010)(SA) faces decorated with steps along [101](SA), affords growth of several polymorphs, each with multiple orientations, as well as oriented crystals of a new metastable polymorph on the (010)(SA) surfaces. The lack of polymorphic selectivity on (010)(SA) can be explained by the geometric lattice analysis, which reveals low-grade epitaxial matches between (010)(SA) and several polymorphs of 1 but no inherent selectivity toward a single polymorph. These observations demonstrate the sensitivity of crystal nucleation to substrate surface structure, the potential of crystalline substrates for selective nucleation and discovery of polymorphs, and the utility of geometric lattice modeling for screening of substrate libraries for controlling polymorphism.  相似文献   

4.
Rifampicin–Isoniazid mixture is a frequently used product in the treatment of tuberculosis. Rifampicin exhibits polymorphism and exists in two polymorphic forms: the stable form I and the metastable form II. The aim of this work was to evaluate the thermal behavior of the binary mixtures of polymorphs I and II of rifampicin and isoniazid by using DSC. Mixtures of different forms (rifampicin form I and II) showed interaction with isoniazid indicating that the mixtures are less stable compared to the drug alone. Interaction was observed in case of both polymorphs of rifampicin.  相似文献   

5.
Equilibrium geometries, surface energies, and surfactant binding energies are calculated for selected bulk facets of wurtzite CdSe with a first-principles approach. Passivation of the surface Cd atoms with alkyl phosphonic acids or amines lowers the surface energy of all facets, except for the polar 000 facet. On the nonpolar facets, the most stable configuration corresponds to full coverage of surface Cd atoms with surfactants, while on the polar 0001 facet it corresponds only to a partial coverage. In addition, the passivated surface energies of the nonpolar facets are in general lower than the passivated polar 0001 facet. Therefore, the polar facets are less stable and less efficiently passivated than the nonpolar facets, and this can rationalize the observed anisotropic growth mechanism of wurtzite nanocrystals in the presence of suitable surfactants.  相似文献   

6.
Polymorphism is an important characteristic of pharmaceutical products because different polymorphs exhibit different physicochemical stabilities, dissolution rates, etc., which makes them different in therapeutic efficiency. Thus, it is important to control the polymorphic structure of pharmaceutical products. A spectroscopy method based on Fourier transform near infrared (FT-NIR) spectroscopy and chemometric techniques is introduced to classify paracetamol preparations according to polymorphic changes. X-ray diffraction (XRD) and FT-NIR studies were carried out on standard samples, paracetamol preparations (acetaminophen tablet), and also the additives. A direct comparison was performed between the spectroscopic data and those obtained by XRD. The NIR and XRD analyses of paracetamol preparations show some distinct differences, particularly in the Iranian tablet. These differences are found to be related to polymorphism and paracetamol purity. The cluster analysis (CA) and principal component analysis (PCA) were utilized to classify the paracetamol preparations. FT-NIR spectroscopy provides a simple, rapid and accurate qualitative analysis method for the identification of paracetamol polymorphs.  相似文献   

7.
It has been found experimentally that superhydrophobic surfaces exhibit strong anisotropic wetting behavior. This study reports a simple but robust thermodynamic methodology to investigate the anisotropic superhydrophobic behavior for parallel grooved surfaces. Free energy and its barrier and the corresponding contact angle and its hysteresis for various orientations of the groove structure are calculated based on the proposed thermodynamic model. It is revealed that the strong anisotropy of equilibrium contact angle (ECA) and contact angle hysteresis (CAH) is shown in the noncomposite state but almost isotropic wetting properties are exhibited in the composite state. Furthermore, for the noncomposite state, decreasing groove width and spacing or increasing groove depth can amplify the anisotropy for ECA. Meanwhile, decreasing groove width and increasing depth can amplify the anisotropy for CAH, while varying groove spacing can barely influence CAH. For the composite state, however, the surface geometry hardly leads to the anisotropic behavior. In addition, using a fitting approximation, a simple quantitative correlation between wettability and orientation can be established well, which is consistent with the numerical calculations.  相似文献   

8.
Effect of hydrostatic pressure on the two (I – monoclinic and II – orthorhombic) polymorphs of paracetamol was studied by X-ray diffraction in the diamond anvil cell at pressures up to 4.5 GPa (for the monoclinic form) and up to 5.5 GPa (for the orthorhombic form). The two groups of phenomena were studied: (i) the anisotropic structural distortion of the same polymorph, (ii) transitions between the polymorphs induced by pressure. The anisotropy of structural distortion of polymorphs I and II was well reproducible from sample to sample, also from powder samples to single crystals. The bulk compressibility of the two forms was shown to be practically the same. However, a noticeable qualitative difference in the anisotropy of structural distortion was observed: with increasing pressure the structure of polymorph II contracted in all the directions showing isotropic compression in the planes of hydrogen-bonded molecular layers, whereas the layers in the structure of the polymorph I expanded in some directions. Maximum compression in both polymorphs I and II was observed in the directions normal to the molecular layers. The transitions between the polymorphs induced by pressure were poorly reproducible and depended strongly on the sample and on the procedure of increasing/decreasing pressure. No phase transitions were induced in the single crystals of the monoclinic polymorph at pressures at least up to 4GPa, although a partial transformation of polymorph I into polymorph II was observed at increased pressure in powder samples. Polymorph II transformed partly into the polymorph I during grinding. The transformation could be hindered if grinding was carried out in CCl4. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
We describe a simple and robust approach to fabricating an alpha-Fe2O3 switchable surface. The hydrophobicity of alpha-Fe2O3 nanostructures was observed for the first time. A remarkable surface wettability transition can be easily achieved by ultraviolet (UV) illumination. The distinctive properties of surface defects are disclosed by X-ray photoelectron spectroscopy (XPS) analysis. The nanoscale adsorption and photocatalytic properties of Fe2+ defects account for the highly amphiphilic character of the surfaces. We believe that the experiment will further the molecular-scale understanding and manipulation of the wetting behavior on smart devices.  相似文献   

10.
Control of surface wettability is very important, and can be realized by controlling surface chemistry or microstructures. Compared with surface chemistry, smart control of surface microstructure is more difficult. Recently, shape memory polymers (SMPs) have advanced to allow control of the surface microstructure and wettability, and thus, demonstrate excellent controllability and many novel functions. In this Minireview, recent achievements in wetting control on SMP surfaces with general hydrophobic, superhydrophobic, superomniphobic and superslippery properties are presented. Particular attention is paid to superhydrophobic surfaces, which display many novel functions, such as switchable isotropic/anisotropic wetting and reprogrammable gradient wetting. Furthermore, a new strategy that combines responsive molecules with the SMP microstructure is also described; this can be used to realize precise wetting control based on coordinated regulation of both surface microstructure and chemistry.  相似文献   

11.
Measurements of contact angles (theta) of aqueous solutions of cetyltrimethylammonium bromide (CTAB) and propanol mixtures at constant CTAB concentration equal to 1x10(-5), 1x10(-4), 6x10(-4) and 1x10(-3) M on polytetrafluoroethylene (PTFE) were carried out. The obtained results indicate that the wettability of PTFE by aqueous solutions of these mixtures depends on their composition and concentration. They also indicate that, contrary to Zisman, there is no linear relationship between cos theta and the surface tension (gamma(LV)), but a linear relationship exists between the adhesional (gamma(LV)cos theta) and surface tension of aqueous solutions of CTAB and propanol mixtures. Curve gamma(LV)cos theta vs gamma(LV) has a slope equal -1 suggesting that adsorption of CTAB and propanol mixtures and the orientation of their molecules at aqueous solution-air and PTFE-aqueous solution interfaces is the same. Extrapolating this curve to the value of gamma(LV)cos theta corresponding to theta=0, the value of the critical tension of PTFE wetting equal 23.4 mN/m was determined. This value was higher than that obtained from contact angles of n-alkanes on PTFE surface (20.24 mN/m). The difference between the critical surface tension values of wetting probably resulted from the fact that at cos theta=1 the PTFE-aqueous solution of CTAB and propanol mixture interface tension was not equal to zero. This tension was determined on the basis of the measured contact angles and Young equation. It appeared that the values of PTFE-aqueous solution of the CTAB and propanol mixtures interface tension can be satisfactorily determined by modified Szyszkowski equation only for solutions in which probably CTAB and propanol molecules are present in monomeric form. However, it appeared that using the equation of Miller et al., in which the possibility of aggregation of propanol molecules in the interface layer is taken into account, it is possible to describe the PTFE-solution interfacial tension for all systems studied in the same way as by the Young equation. On the basis of linear dependence between the adhesional and surface tension it was established that the work of adhesion of aqueous solution of CTAB and propanol mixtures does not depend on its composition and concentration, and the average value of this work was equal to 46.85 mJ/m(2), which was similar to that obtained for adhesion of aqueous solutions of two cationic surfactants mixtures to PTFE surface.  相似文献   

12.
Solid-state reactions are commonly observed in organic crystals, including pharmaceutical and agricultural materials, fine chemicals, dyes, explosives, optics, and many other substances. The fact that these reactions are in general highly anisotropic with regard to the initiation and propagation in a crystal has led to this study for investigating the effect of crystal packing on the reaction mechanism and kinetics of organic crystals. We have used electron density-based concepts, including nuclear Fukui function, developed from density functional theory, for elucidating the effect of electronic structures of different polymorphs on the difference in their chemical reactivity. Two polymorphs of flufenamic acid were studied. The calculation results on major reacting faces of the two forms support their reactivity difference with ammonia gas. In addition, we calculated surface energies of reacting faces to discuss how the mechanical difference may affect the propagation of solid-state reaction.  相似文献   

13.
DSC and adiabatic calorimetry study of the polymorphs of paracetamol   总被引:3,自引:0,他引:3  
Monoclinic (I) and orthorhombic (II) polymorphs of paracetamol were studied by DSC and adiabatic calorimetry in the temperature range 5 - 450 K. At all the stages of the study, the samples (single crystals and powders) were characterized using X-ray diffraction. A single crystal → polycrystal II→ I transformation was observed on heating polymorph II, after which polymorph I melted at 442 K. The previously reported fact that the two polymorphs melt at different temperatures could not be confirmed. The temperature of the II→I transformation varied from crystal to crystal. On cooling the crystals of paracetamol II from ambient temperature to 5 K, a II→ I transformation was also observed, if the 'cooling-heating' cycles were repeated several times. Inclusions of solvent (water) into the starting crystals were shown to be important for this transformation. The values of the low-temperature heat-capacity of the I and II polymorphs of paracetamol were compared, and the thermodynamic functions calculated for the two polymorphs. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Surface atomic arrangement and coordination of photocatalysts highly exposed to different crystal facets significantly affect the photoreactivity. However, controversies on the true photoreactivity of a specific facet in heterogeneous photocatalysis still exits. Herein, we exemplified well‐defined BiOBr nanosheets dominating with respective facets, (001) and (010), to track the reactivity of crystal facets for photocatalytic water splitting. The real photoreactivity of BiOBr‐(001) were evidenced to be significantly higher than BiOBr‐(010) for both hydrogen production and oxygen evolution reactions. Further in situ photochemical probing studies verified the distinct reactivity is not only owing to the highly exposed facets, but dominated by the co‐exposing facets, leading to an efficient spatial separation of photogenerated charges and further making the oxidation and reduction reactions separately occur with different reaction rates, which ordains the fate of the true photoreactivity.  相似文献   

15.
Surface atomic arrangement and coordination of photocatalysts highly exposed to different crystal facets significantly affect the photoreactivity. However, controversies on the true photoreactivity of a specific facet in heterogeneous photocatalysis still exits. Herein, we exemplified well-defined BiOBr nanosheets dominating with respective facets, (001) and (010), to track the reactivity of crystal facets for photocatalytic water splitting. The real photoreactivity of BiOBr-(001) were evidenced to be significantly higher than BiOBr-(010) for both hydrogen production and oxygen evolution reactions. Further in situ photochemical probing studies verified the distinct reactivity is not only owing to the highly exposed facets, but dominated by the co-exposing facets, leading to an efficient spatial separation of photogenerated charges and further making the oxidation and reduction reactions separately occur with different reaction rates, which ordains the fate of the true photoreactivity.  相似文献   

16.
Polymorph selectivity has been achieved during crystallization of anthranilic acid (AA) and 5-methyl-2-[(2-nitrophyenyl)amino]-3-thiophenecarbonitrile (ROY), both considered benchmarks of polymorphic behavior, within nanoporous glass beads and polymer monoliths. Whereas polymorph III of AA crystallizes from the melt on nonporous glass beads or within larger pores, the metastable polymorph II crystallizes in pores with diameters <23 nm, with the selectivity toward this form increasing with decreasing pore size. Of the six ROY polymorphs characterized by single-crystal X-ray diffraction, the yellow form (Y) crystallizes during evaporation of pyridine solutions imbibed by the 30-nm cylindrical pores of porous polycyclohexylethylene (p-PCHE) monoliths. Although both R and ON grow from the melt on the external surfaces of PCHE, only the red form (R) crystallizes in the pores. Amorphous ROY also forms in p-PCHE pores during evaporation from pyridine solutions, subsequently crystallizing to the R nanocrystals upon heating. Although heterogeneous nucleation on the pore walls may play a role, these observations suggest that nucleation and polymorph selectivity is governed by critical size constraints imposed by the ultrasmall pores. The ability to achieve polymorph selectivity in both glass and polymer matrices suggests wide-ranging compatibility with various organic crystalline solids, promising a new approach to controlling polymorphism and searching for unknown polymorphs.  相似文献   

17.
Reversible and irreversible photoinduced changes in surface wettability were observed in noncovalently assembled multilayered films. The multilayered films studied were fabricated from a self-assembled monolayer (SAM) consisting of 4-(10-mercaptodecyloxy)pyridine-2,6-dicarboxylic acid on gold, Cu(II) ions complexed to the pyridine head group of the SAM, and either cis- (film 1) or trans- (film 2) stilbene-4,4'-dicarboxylic acid complexed to the Cu(II) ions. Irradiation of film 1 at wavelengths corresponding to the absorption band of the cis-stilbene isomer resulted in an irreversible chemical change and an irreversible increase in wettability, as indicated by surface contact angle and grazing incidence IR measurements. However, no evidence for cis-/trans-photoisomerization was observed. Films 3 and 4, similar to films 1 and 2 in that they consist of an underlying SAM, an intermediate layer consisting of Cu(II) ions, and either cis- or trans-stilbene-4,4'-dicarboxylic acid as the capping ligand, were fabricated with a mixed SAM that contained both 4-(10-mercaptodecyloxy)pyridine-2,6-dicarboxylic acid and 4-tert-butylbenzenethiol. Irradiation of these films at wavelengths corresponding to stilbene isomer absorption bands resulted in reversible cis- to trans- (film 3) and trans- to cis- (film 4) photoisomerization and reversible switching of the surface wettability between a low wetting state (cis-stilbene) and a high wetting state (trans-stilbene). The difference in observed behavior between films 1 and 2 and films 3 and 4 is attributed to the greater surface spacing afforded by the mixed monolayer, which allows greater conformational flexibility and lowers the steric barriers to isomerization.  相似文献   

18.
采用阳极氧化法在钛箔表面制备TiO2纳米管阵列, 并在其表面修饰N3染料(Ruthenium dye)作敏化剂, 用氟硅烷来提高表面疏水性, 获得超疏水薄膜. SEM测定结果表明, 纳米管薄膜具有各向异性浸润结构, 同时阳极氧化的非均匀性增加了表面的粗糙度. UV-Vis吸收光谱及电化学阻抗谱结果表明, 薄膜具有优异的光电性能. 通过施加超过一定阈值的电压, 液滴在薄膜表面由超疏水状态转变为亲水状态. 利用光电协同激励作用时, 阈值电压比单独使用电激励时降低了10 V, 这是使用高效的N3染料光电敏化层的结果.  相似文献   

19.
The nature of crystallographic reactive sites on the lepidocrocite (gammaFeOOH) surface has been determined by atomic force microscopy (AFM) and extended X-ray absorption fine structure (EXAFS) spectroscopy and compared to the surface bonding properties of goethite. To this end, the specific surface areas of lepidocrocite particles, and of their crystal faces, were calculated from the size and shape of individual particles determined by AFM, and the structure of Cd surface complexes was determined from Cd-Fe EXAFS distances. The combined results show that Cd forms solely mononuclear surface complexes, even at 100% surface coverage, and that hydrated Cd octahedra sorb on basal {010} and lateral {hk0}, {h0l} faces of lepidocrocite platelets by sharing edges with surface Fe octahedra. The absence, or scarcity, of corner-sharing linkage between Fe and Cd octahedra on the surface of lepidocrocite is in contrast to goethite (alphaFeOOH), where this type of complex is predominant. The explanation for the observed difference of Cd sorption mechanism on these two polymorphs lies not in the shape and relative surface area of their crystallographic faces, but in their different bulk structures and, specifically, in the stacking mode of anion layers (O(2-), OH(-)) which is hexagonal in alphaFeOOH and cubic in gammaFeOOH. This study demonstrates that the stacking mode of anions in the sorbent solid is a key factor in determining the structure of surface complexes on mineral surfaces. Copyright 2000 Academic Press.  相似文献   

20.
接触角及其在表面化学研究中的应用   总被引:34,自引:0,他引:34  
润湿是一种流体取代界面上另一种流体的界面现象,通常是指液体从固体表面取代气体的过程。如在干净玻璃板上加水,排走表面上的空气形成薄的水膜,即为铺展润湿,简称铺展,此过程的特点是原固气界面消失,气液界面扩大,并形成新的固液界面。将固体完全浸渍于液体中,固气界面消失,气液界面不变,形成新的固液界面,此过程为现润湿(浸湿)。液体与固体接触,气液和固气界面减小,形成固液界面的过程为沾湿。润湿过程涉及固体和液  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号