首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
以4-(2,3-二氯苯基)-1,4-二氢-2,6-二甲基-3,5-吡啶二羧酸(2-氰基乙基)(甲基)酯(5)为起始原料,合成了丁酸氯维地平的5种降解杂质:4-(2,3-二氯苯基)-1,4-二氢-2,6-二甲基-3,5-吡啶二羧酸单甲酯(A), 4-(2,3-二氯苯基)-1,4-二氢-2,6-二甲基-3-吡啶羧酸甲酯(B), 4-(2,3-二氯苯基)-2,6-二甲基-3,5-吡啶二羧酸单甲酯(C), 4-(2,3-二氯苯基)-2,6-二甲基-3,5-吡啶二羧酸(丁酰氧基甲基)(甲基)酯(D)和4-(2,3-二氯苯基)-2,6-二甲基-3-吡啶羧酸甲酯(E)。其中A由5水解制得;B由A脱羧制得;C由5氧化后再经水解制得;D由C和丁酸氯甲酯缩合制得;E由C脱羧制得,化合物结构经1H NMR和MS(ESI)确证。  相似文献   

2.
The reaction of 1-benzoyl-2-(-benzoyloxy--phenylvinyl)-1H-benzimidazole with carboxylic acids was investigated. A convenient method was developed for the synthesis of unsymmetrical 2-(diacylmethylene)-2,3-dihydro-1H-benzimidazoles. 2-(4-Pyrazolyl)-1H-benzimidazoles were obtained by the reaction of 2-(benzoylformylmethylene)-2,3-dihydro-1H-benzimidazole with hydrazine.  相似文献   

3.
A simple and inexpensive synthesis of novel 2-(3-oxo-3-arylpropyl)-2,3-dihydro-1H-inden-1-one derivatives has been achieved via Pd/C-mediated arylation followed by I2-mediated regioselective hydration of 2-(prop-2-ynyl)-2,3-dihydro-1H-inden-1-ones. A wide variety of 3-aryl substituted 2-propynyl indanone derivatives were conveniently prepared by using 10% Pd/C-PPh3-CuI as a catalyst system, some of which were used to prepare the corresponding ketones via alkyne hydration in the presence of catalytic I2. In an in vitro study a representative compound showed inhibition of PDE4B (phosphodiesterase type 4B) and binding with this protein in silico  相似文献   

4.
5.
Indoprofen类似物的合成和表征   总被引:1,自引:0,他引:1  
王思宏  赵华  高永俊 《有机化学》2003,23(9):1022-1025
以邻硝基苯甲醛为超始原料,合成2-溴甲基-3-喹啉酸乙酯中间体,其分别与 苯胺、2-氯代苯胺、3-氯代苯胺、2-甲基苯胺和3-甲基苯胺发生Williamson反应, Williamson反应产物经闭环反应,得到新化合物2,3-二氢-1-氧代-2-苯基-1H-吡 咯并[3,4-b]喹啉(4a),2,3-二氢-1-氧代-2-(2-氯代苯基)-1H-吡咯并[3, 4-b]喹啉(4b),2,3-二氢-1-氧代-2-(3-氯代苯基)-1H-吡咯并[3,4-b]喹啉( 4c),2,3-二氢-1-氧代-2-(2-甲基苯基)-1H-吡咯并[3,4-b]喹啉(4d)和2, 3-二氢-1-氧代-2-(3-甲基苯基)-1H-吡咯并[3,4-b]喹啉(4e)。12个新化合物 由元素分析、红外光谱、核磁共振氢谱、质谱予以证实。  相似文献   

6.
Optimized geometries and energies for 3,4-dihydro-1,2-dithiin ( 1 ), 3,6-dihydro-1,2-dithiin ( 2 ), 4H-1,3-dithiin ( 3 ), and 2,3-dihydro-1,4-dithiin ( 4 ) were calculated using ab initio 6-31G* and MP2/6-31G*//6-31G* methods. At the MP2/6-31G*//6-31G* level, the half-chair conformer of 4 is more stable than those of 1 , 2 , and 3 by 2.5, 3.5, and 3.6 kcal/mol, respectively. The half-chair conformers of 1 , 2 , 3 , and 4 are 2.9, 7.1, 2.0, and 5.6 kcal/mol, respectively, more stable than their boat conformers. The calculated half-chair structures of 1 – 4 are compared with the calculated chair conformer of cyclohexane and the half-chair structures for cyclohexene, 3,4-dihydro-1,2-dioxin ( 5 ), 3,6-dihydro-1,2-dioxin ( 6 ), 4H-1,3-dioxin ( 7 ), and 2,3-dihydro-1,4-dioxin ( 8 ). © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 1064–1071, 1998  相似文献   

7.
abstract

Computational investigations were done on bis(1-allyl-3-benzyl-2,3-dihydro-1H-benzo[d]imidazol-2-yl)silver(I), bis(1-benzyl-3-butyl-2,3-dihydro-1H-benzo[d]imidazol-2-yl)silver(I), bis(1-allyl-3-benzyl-2,3-dihydro-1H-benzo[d]imidazol-2-yl)dibromidepalladium(II), and bis(1-benzyl-3-butyl-2,3-dihydro-1H-benzo[d]imidazol-2-yl)dibromidepalladium(II) complexes. Related complexes were optimized at different six calculation levels which are HF/6-31G(LANL2DZ), HF/6-31G(d,p)(LANL2DZ), B3LYP/6-31G(LANL2DZ), B3LYP/6-31G(d,p)(LANL2DZ), M062X/6-31G(LANL2DZ) and M062X/6-31G(d,p)(LANL2DZ) levels in vacuo. IR and NMR spectrum are calculated and examined in detail. Energy diagram of molecular orbitals, contour diagram of frontier molecular orbitals, molecular electrostatic potential maps and the harmonic surface of related molecules are examined in detail. Finally, interactions between mentioned complexes and related proteins (1BNA, 1JNX, and 2ING) are investigated in detail. As a result, it is found that biological and anti-cancer properties of silver N-heterocyclic carbene complexes are higher than those of palladium complexes.  相似文献   

8.
Nine novel prenyl-dihydrofurocoumarin-type sesquiterpenoid derivatives, 2,3-dihydro-7-hydroxy-2R*,3R*-dimethyl-2-[4,8-dimethyl-3(E),7-nonadienyl]-furo[3,2-c]coumarin, 2,3-dihydro-7-hydroxy-2S*,3R*-dimethyl-2-[4,8-dimethyl-3(E),7-nonadien-6-onyl]-furo[3,2-c]coumarin, 2,3-dihydro-7-hydroxy-2S*,3R*-dimethyl-2-[4-methyl-5-(4-methyl-2-furyl)-3(E)-pentenyl]-furo[3,2-c]coumarin, 2,3-dihydro-7-hydroxy-2R*,3R*-dimethyl-2-[4-methyl-5- (4-methyl-2-furyl)-3(E)-pentenyl]-furo[3,2-c]coumarin, 2,3-dihydro-7-methoxy-2S*,3R*-dimethyl-2-[4,8-dimethyl-3(E),7-nonadienyl]-furo[3,2-c]coumarin, 2,3-dihydro-7-methoxy-2R*,3R*-dimethyl-2-[4,8-dimethyl-3(E),7-nonadienyl]-furo[3,2-c]coumarin, 2,3-dihydro-7-methoxy-2S*,3R*-dimethyl-2-[4,8-dimethyl-3(E),7-nonadien-6-onyl]-furo-[3,2-c]coumarin, and 2,3-dihydro-7-methoxy-2S*,3R*-dimethyl-2-[4-methyl-5-(4-methyl-2-furyl)-3(E)-pentenyl]-furo[3,2-c]coumarin, were isolated from the roots of Ferula ferulaeoides [corrected]. The structures were established by comprehensive spectral analysis. The biosynthetic pathway leading to these prenyl-furocoumarin-type sesquiterpenoids is proposed based on their structures.  相似文献   

9.
2a,4-Disubstituted 2,2a,3,4-tetrahydro-2-phenyl-1H-azeto[2,1-d][ 1,5]benzothiazepin-1-ones, as well as 2-substi-tuted 2,3-dihydro-3-phenylacetyl-2-styryl-benzothiazoles and 4a,6-disubstituted 3- .benzyl-4a,5-d/hydro-2-phenyl-1H,6H-[1,3]oxazino[2,3-d][1,5]benzothiazepin-1-ones, were obtained from the reaction of 2,4-disubstituted 2,3-dihydro-1,5-benzothiazepines with phenylacetyl chloride in the presence of triethylamine. The mechanism for the formation of 4a,5-dihydro-1H,6H-[1,3]oxazino[2,3-d][1,5]benzothiazepin-1-ones, 2,3-dihydro-1,3-oxazin-4-one derivatives, was suggested.  相似文献   

10.
Thunbergols A (4) and B (5), tetraprenyltoluquinols, along with three known compounds (1-3) have been isolated from the brown alga Sargassum thunbergii. The structures of these two new compounds were determined to be 9-(3,4-dihydro-2,8-dimethyl-6-hydroxy-2H-1-benzopyran-2-yl)-6-methyl-2-(4-methyl-3-pentenyl)-(2E,6E)-nonadienoic acid (4) and 10-(2,3-dihydro-5-hydroxy-7-methyl-1-benzofuran-2-yl)-10-hydroxy-6-methyl-2-(4-methyl-3-pentenyl)-(2E,6E)-undecadienoic acid (5), respectively, by combined spectroscopic methods. Both of them exhibited significant scavenging activities on radical and potently inhibited generation of ONOO(-) from morpholinosydnonimine (SIN-1).  相似文献   

11.
The molten reaction of 2-naphthol, 4-(aminomethyl)pyridine, and 4-pyridinecarboxaldehyde at about 180 degrees C yields trans-2,3-dihydro-2,3-di(4'-pyridyl)benzo[e]indole (1) which possesses two chiral centers, rather than an expected Betti-type reaction product with only one chiral carbon center. The same reactions, using 3-pyridinecarboxaldehyde, 4-cyanobenzaldehyde, or 3- cyanobenzaldehyde instead of 4-pyridinecarboxaldehyde produce the related compounds trans-2,3-dihydro-2-(4'-pyridyl)-3-(3"-pyridyl)benzo[e]indole (2), trans-2,3-dihydro-2-(4'-pyridyl)-3-(4"-cyanophenyl)benzo[e]indole (3), and trans-2,3-dihydro-2-(4'-pyridyl)-3-(3"-cyanophenyl)benzo[e]indole (4), respectively. This reaction proceeds with a high degree of stereoselectivity with a trans/cis ratio of about 98:2 at elevated temperature. Compounds 1, 2, and 4 crystallize in a noncentrosymmetric space group (Pca2(1), Pca2(1), and Cc), while compound 3 has a chiral space group (P2(1)). These successfully acentric packing arrangements are probably due to the molecule bearing both two chiral centers and potential hydrogen-bonding groups. Furthermore, the reaction of racemic 6-hydroxy-2'-methyl-2-naphthaleneacetic acid with ethyl-2-cyano-1-(4'-pyridyl)acrylic acetate in the presence of piperidine gives 1-pyridyl-2-ethoxycarbonyl-3-amino-1H-naphtho[2,1-b]pyran-2'-methylacetic acid (5), which likewise crystallizes in a chiral space group. All of compounds are second harmonic generation (SHG) active, and have a very strong SHG response approximately about 8.0, 5.0, 12.0, 6.0, and 1.4 (for 1-5 compounds) times that of urea. Ferroelectric property measurements indicate that compounds 1, 2, 4, and 5 may display ferroelectric behavior.  相似文献   

12.
To determine the structures of two isomeric products, 2-phenacylidene-1,2-dihydro-4H-pyrido[2,3-b]pyrazin-3-one (2) and 3-phenacylidene-3,4-dihydro-1H-pyrido[2,3-b]pyrazin-2-one (3) obtained by condensation of 2,3-diaminopyridine (1) with ethyl benzoylpyruvate [1–3], these compounds were hydrolyzed to give 2-methyl-4H-pyrido[2,3-b]pyrazin-3-one (4) and 3-methyl-1H-pyrido[2,3-b]pyrazin-2-one (5) , respectively [4,5]. Both hydrolysates 4 and 5 were hydrogenated to afford 2-methyl-1,2-dihydro-4H-pyrido[2,3-b]pyrazin-3-one (6) and 3-methyl-3,4-dihydro-1H-pyrido[2,3-b]pyrazin-2-one (7) . The latter compound was identical with an unequivocally synthesized compound providing proof for the structures of all these compounds.  相似文献   

13.
A convenient, one-pot procedure for the synthesis of 1-benzoyl-2(S)-substituted-5-iodo-2,3-dihydro-4(H)-pyrimidin-4-ones by tandem decarboxylation/beta-iodination of the corresponding 6-carboxy-perhydropyrimidin-4-ones was developed. In addition, several 1-benzoyl-2(S)-substituted-5-bromo-2,3-dihydro-4(H)-pyrimidin-4-ones were readily prepared by bromination of 1-benzoyl-2(S)-substituted-2,3-dihydro-4(H)-pyrimidin-4-ones. Subsequently, Sonogashira coupling of the halogenated heterocyclic enones with various terminal alkynes produced 1-benzoyl-2(S)-isopropyl-5-alkynyl-2,3-dihydro-4(H)-pyrimidin-4-ones in good yields. Hydrogenation of the unsaturated C-C moieties in the Sonogashira products followed by acid hydrolysis afforded highly enantioenriched alpha-substituted beta-amino acids.  相似文献   

14.
The double-decker sandwich complex CpIr(2,3-Et(2)C(2)B(4)H(4)) (1a) was prepared via deprotonation of nido-2,3-Et(2)C(2)B(4)H(6) to its mono- or dianion and reaction with (CpIrCl(2))(2) in THF and isolated as a colorless air-stable solid; the B(4)-chloro derivative 1b was also obtained. Decapitation of 1a and 1b with TMEDA afforded colorless nido-CpIr(2,3-Et(2)C(2)B(3)H(5)) (2a) and its 4-chloro derivative 2b. Chlorination of 1a by Cl(2) or N-chlorosuccinimide gave the symmetrical species CpIr(2,3-Et(2)C(2)B(4)H(3)-5-Cl) (1c), which was decapped to yield nido-CpIr(2,3-Et(2)C(2)B(3)H(4)-5-Cl) (2c). The triple-decker complexes CpIr(2,3-Et(2)C(2)B(3)H(2)-4[6]-Cl)IrCp (3), an orange solid, and dark green CpIr(2,3-Et(2)C(2)B(3)H(2)-4[6]-Cl)CoCp (5) were prepared from 2a and nido-CpCo(2,3-Et(2)C(2)B(3)H(5)) (4a), respectively, by deprotonation and reaction with (CpIrCl(2))(2) in THF. Reaction of the 2c(-) anion with Rh(MeCN)(3)Cl(3) gave the dark green tetradecker complex [CpIr(Et(2)C(2)B(3)H(2)-5-Cl)](2)RhH (6). In an attempt to prepare a heterotrimetallic Co-Rh-Ir tetradecker sandwich, a three-way reaction involving the deprotonated anions derived from CpCo(2,3-Et(2)C(2)B(3)H(4)-5-Cl) (4b) and 2c with Rh(MeCN)(3)Cl(3) was conducted. The desired species CpCo(Et(2)C(2)B(3)H(2)Cl)RhH(Et(2)C(2)B(3)H(2)Cl)IrCp (7) and the tetradeckers [CpCo(Et(2)C(2)B(3)H(2)Cl)](2)RhH (8) and 6 were isolated in small quantities from the product mixture; many other apparent triple-decker and tetradecker products were detected via mass spectroscopy but were not characterized. All new compounds were isolated via column or plate chromatography and characterized via NMR, UV-visible, and mass spectroscopy and by X-ray crystal structure determinations of 1a and 3. Crystal data for 1a: space group C2/c; a = 28.890(5) ?, b = 8.511(2) ?, c = 15.698(4) ?, beta = 107.61(2) degrees; Z = 8; R = 0.049 for 1404 independent reflections having I > 3sigma(I). Crystal data for 3: space group P2(1)/c; a = 11.775(4) ?, b = 15.546(5) ?, c = 15.500(5) ?, beta = 103.16(3) degrees; Z = 4; R = 0.066 for 2635 independent reflections having I > 3sigma(I).  相似文献   

15.
A pair of new enantiomeric neolignans, ethyl 3-[(2R,3S)-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydro-1-benzofuran-5-yl] propanoate (+) (1) and ethyl 3-[(2S,3R)-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydro-1-benzofuran-5-yl] propanoate (-) (1), together with a pair of known enantiomeric neolignans (+) (2) and (-) (2), as well as five known lignans (3-7) were isolated from the ethanol extract of Lobelia chinensis. Their structures were elucidated on the basis of extensive spectroscopic analyses, including 1D and 2D NMR, HR-ESI-MS and CD spectra.  相似文献   

16.
Electrode potential of 6-(2,3-dihydro-1,3-dioxo-2-phenyl-1H-inden-2-yl)-2,3-dihydroxybenzaldehyde (DPDB) in methanol have been calculated theoretically. For the achievement of this task, the density functional theory (B3LYP/6-31G(d)) was employed with the inclusion of the entropic and thermochemical corrections to yield the free energies of the redox reactions. The electrode potential was also obtained experimentally by means of an electrochemical technique (cyclic voltammetry). The geometric parameters, the vibrational frequency values and the UV spectrum of DPDB and 2-(2,3-dihydro-1,3-dioxo-2-phenyl-1H-inden-2-yl)-5,6-dioxocyclohexa-1,3-dienecarbaldehyde (DPDD is the oxidized form of DPDB), were computed using the same methods. The calculated IR spectrum of DPDB, used for the assignment of the IR frequencies, was observed in the experimental FT-IR spectrum. The correlation between the theoretical and experimental DPDB vibrational frequencies was 0.996. This agreement mutually verified the accuracy of the experimental method and the validity of the applied mathematical model.  相似文献   

17.
Three novel 2-prenyl-dihydrofurochromone-type sesquiterpenoid derivatives, 2,3-dihydro-7-hydroxy-2S*,3R*-dimethyl-2-[4,8-dimethyl-3(E),7-nonadienyl]-furo[2,3-b]chromone, 2,3-dihydro-7-hydroxy-2S*,3R*-dimethyl-2-[4-methyl-5-(4-methyl-2-furyl)-3(E),7-pentenyl]-furo[2,3-b]chromone, and 2,3-dihydro-7-hydroxy-2R*,3R*-dimethyl-2-[4-methyl-5-(4-methyl-2-furyl)-3(E),7-pentenyl]-furo[2,3-b]chromone, were isolated from the roots of Ferula ferulaeoides. The structures were established by comprehensive spectral analysis. The biosynthetic pathway leading to these 2-prenyl-dihydrofurochromone-type sesquiterpenoids is proposed based on their structures.  相似文献   

18.
A synthesis of novel derivatives of 6-methyluracil, 6-methyl-2-thioxo-, and 2-imino-6-methyl-2,3-dihydro-1H-pyrimidin-4-one containing a 2-(phenoxy)ethyl substituent at position 5 of the pyrimidine ring has been carried out. It was found that 5-[2-(phenoxy)ethyl] derivatives of 6-methyl-2-thioxo- and 2-imino-6-methyl-2,3-dihydro-1H-pyrimidin-4-one are obtained by the condensation of the corresponding ethyl 3-oxo-2-(2-phenoxyethyl)butanoates with thiourea or guanidine. 6-Methyl-5-[2-(phenoxy)ethyl]uracils can be prepared by treating 6-methyl-5-[2-(phenoxy)ethyl]-2-thioxo-2,3-dihydro-1H-pyrimidin-4-ones with an excess of aqueous monochloroacetic acid solution. __________ Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 8, pp. 1213–1217, August, 2005.  相似文献   

19.
An innovative approach to the one-pot synthesis of highly functionalized 3,4-dihydro-1H-isothiochromenes (3), 6H-benzo[c]thiochromenes (5, 6), 6H-benzo[c]chromenes (8), and 2,3-dihydro-1-benzothiophenes (10, 11) is delineated from the reaction of a suitably functionalized 6-aryl-3-carbomethoxy-4-methylthio-2H-pyran-2-one (1) and a carbanion generated from tetrahydrothiopyran-4-one, 4-thiochromanone, 4-chromanone, and tetrahydrothiophene-3-one through ring-transformation reactions.  相似文献   

20.
Transition structures, energetics, and nucleus-independent chemical shifts (NICS) for Cope rearrangements of cis-2,3-divinylaziridine (1N), cis-2,3-divinyloxirane (1O), cis-2,3-divinylphosphirane (1P), and cis-2,3-divinylthiirane (1S), leading to 4,5-dihydro-1H-azepine (3N), 4,5-dihydrooxepine (3O), 4,5-dihydro-1H-phosphepine (3P), and 4,5-dihydrothiepine (3S), respectively, are reported at the (U)B3LYP/6-31G level and compared to those of cis-1,2-divinylcyclopropane (1C). The minimum energy path for all rearrangements proceeds through an endo-boatlike, aromatic transition structure. The predicted activation barriers increase in the order of 1C < 1N < 1O < 1P < 1S, which agrees qualitatively with the decreasing ring strain order of reference compounds (cyclopropane > aziridine > oxirane > phosphirane > thiirane). The exothermicities for these rearrangements decrease in the order of 1N > 1O > 1C > 1P > 1S. If the place of 1C in this sequence is ignored, the decreasing reaction exothermicity order correlates well with the increasing activation barrier order and with decreasing strain order of reference compounds. NICS values calculated for transition structures are typical of highly aromatic transition structures of thermally allowed pericyclic reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号