首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A number of complexes of Co(II), Ni(II), Cu(II), Ru(II), Pd(II) and Pt(II) with 2-methyl-3-(carboxy methyl) quinazolin (3H)-4-one (MCMQ) and 2-phenyl-3-(carboxy methyl) quinazolin (3H)-4-one (PCMQ) have been synthesized and characterized by analytical, conductivity, thermal, magnetic, infrared, electronic, proton magnetic resonance and electron spin resonance spectral data. Based on analytical data, the stoichiometry and the association with other molecules of the complexes have been determined. Conductivity data show that all these complexes are nonelectrolytes. Infrared and PMR spectral data indicate that both the ligands are uninegative bidentate with all the metal ions. Based on electronic spectral data, the geometries of the complexes have been indicated. Electronic spectral parameters for Co(II) and Ni(II) and ESR parameters for Cu(II) complexes have been calculated and relevant conclusions have been drawn with respect to the nature of bonds present in them.  相似文献   

2.
Using Schiff's base ligand, several Cu(II) based bimetallic complexes such as Cu-Cu, Cu-Co, Cu-Ni, Cu-Zn, Cu-Mn have been prepared in a stepwise procedure. The structures of these complexes and the ligand have been proposed on the basis of FAB mass, elemental analysis, UV-vis, IR, electron paramagnetic resonance (EPR) and CV studies. EPR parameters, obtained through complete simulation, suggest that the formation of bimetallic complexes forces the Cu(II) centre to increase the flexibility in comparison with the monometallic Cu(II) complex. However, the nature of the second metal ion in the bimetallic complex effects the distortion around the first metal ion. The reduction of the complexes from Cu(II) to Cu(I) involves a large geometrical change and is found to be irreversible. A large positive shift is seen in the cathodic process, which can be ascribed to increased distortion due to bimetallic coordination. These complexes have potential usage in DNA studies.  相似文献   

3.
A new half unit and some new symmetrical or asymmetrical VO(IV) and Cu(II) complexes of tetradentate ONNO Schiff base ligands were synthesized. The probable structures of the complexes have been proposed on the basis of elemental analyses and spectral (IR, UV–Vis, electron paramagnetic resonance, ESI-MS) data. VO(IV) and Cu(II) complexes exhibit square pyramidal and square-planar geometries, respectively. The complexes are non-electrolytes in dimethylformamide (DMF) and dimethylsulfoxide. Electrochemical behaviors of the complexes were studied using cyclic voltammetry and square wave voltammetry. Half-wave potentials (E 1/2) are significantly influenced by the central metal and slightly influenced by the nature of substituents on salen. While VO(IV) complexes give VOIV/VOV redox couples and a ligand-based reduction process, Cu(II) complexes give only a ligand-based reduction. In situ spectroelectrochemical studies were employed to determine the spectra of electrogenerated species of the complexes and to assign the redox processes. The g-values were calculated for all these complexes in polycrystalline state at 298?K and in frozen DMF (113?K). The evaluated metal–ligand bonding parameters showed strong in-plane σ-bonding for some Cu(II) complexes.  相似文献   

4.
A series of novel complexes with 5-sulphadiazineazo-3-phenyl-2-thioxo-4-thiazolidinone (H2L1) and 5-sulphamethazineazo-3-phenyl-2-thioxo-4-thiazolidinone (H2L2) and various anions were prepared. Their structures and properties were characterized by elemental analyses, IR, UV-vis, EPR spectroscopy and magnetic measurements. The visible and EPR spectral studies indicated that the Cu(II) complexes have distorted octahedral. From the electron paramagnetic resonance and spectral data, the orbital reduction factors k(parallel) and k(perpendicular) were calculated. In all cases k(perpendicular) > k(parallel) indicates a 2B1g ground state. The crystal field parameters for Co(II) and Ni(II) complexes were calculated. The electronic absorption and a g(parallel)/A(parallel) values are indicative for the beginning of tetragonal distortion. The complexes, however, have lower symmetries and the amount of distortion in terms of DT/Dp, applying NSH 'Hamiltonian Theory' has been evaluated which indicate that the complexes are moderately distorted.  相似文献   

5.
Mn(II), Co(II), Ni(II), and Cu(II) complexes have been synthesized with benzil bis(thiosemicarbazone) (L) and characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, thermogravimetric studies, infrared (IR), electronic, and electron paramagnetic resonance (eEPR) spectral studies. The molar conductance measurements of the complexes in DMF correspond to the non-electrolytic nature of the complexes. Thus these complexes may be formulated as [M(L)X2] (where M = Mn(II), Co(II), Ni(II), Cu(II) and X = Cl? and NO3 ?). On the basis of IR, electronic, and EPR spectral studies, an octahedral geometry has been assigned for Mn(II), Co(II), and Ni(II) complexes, whereas a tetragonal geometry for the Cu(II) complexes is presumed. The free ligand and its metal complexes were tested against the phytopathogenic fungi (i.e., Rhizoctonia baticola, Alternaria alternata) in vitro.  相似文献   

6.
Complexes of Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with 3-(2-pyridyl)-1-(2-hydroxy phenyl)-2-propen-1-one (PHPO), 3-(1-naphthyl)-1-(2-hydroxy phenyl)-2-propen-1-one (NHPO) and 3-(3,4-dimethoxy phenyl)-1-(2-hydroxy phenyl)-2-propen-1-one (DMPHPO) have been synthesized and characterized by analytical, conductivity, thermal, magnetic, infrared, electronic and electron spin resonance data. Based on analytical data the stoichiometry of the complexes has been found to be 1 : 2. The conductivity data show that all these complexes are non-electrolytes. The infrared spectral data indicate that the ligand PHPO acts as uninegative tridentately towards Co(II) and Ni(II) and bidentately with Cu(II), Zn(II) and Cd(II). Ligands like NHPO and DMPHPO act as uninegative bidentately with all the metal ions. The electronic spectral data suggest that all the Co(II) complexes and Ni(II) of PHPO complex are octahedral and all the Cu(II) and Ni(II) of NHPO and DMPHPO complex are square-planar. The complex of Zn(II) and Cd(II) are tetrahedral. ESR parameters of Cu(II) complexes have been calculated and relevant conclusions have been drawn with respect to the nature of bonds present in them.  相似文献   

7.
A set of four Cu(II) complexes, [Cu(cdnapen)], [Cu(cdnappd)], [Cu(cdMenappd)] and [Cu(cdMeMeOsalpd)], derived from Schiff base ligands with an asymmetric NN′OS coordination sphere have been synthesized. The molecular and the crystal structures have been determined by X-ray diffractometry. The structural results confirm that the complexes are tetra coordinated. The copper (II) ion coordinates to two nitrogen atoms from the imine moiety of the ligand, a sulfur atom from the methyl dithiocarboxylate moiety and a phenolic oxygen atom. The complexes show an unusual tetrahedral distortion to the square-planar geometry around the metal centre in spite of the pseudomacrocyclic skeleton of the ligand. The complexes were further characterized by cyclic voltammetry and electron paramagnetic resonance spectroscopy. The degree of tetrahedral distortion of the complexes appears to be dependent on the number of carbon atoms of the aliphatic bridge and the nature of the coordinating atoms.  相似文献   

8.
Co(II), Ni(II), Cu(II) and Zn(II) complexes of the Schiff base derived from vanillin and dl-alpha-aminobutyric acid were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, magnetic measurements, powder XRD and biological activity. The analytical data show the composition of the metal complex to be [ML(H(2)O)], where L is the Schiff base ligand. The conductance data indicate that all the complexes are non-electrolytes. IR results demonstrate the tridentate binding of the Schiff base ligand involving azomethine nitrogen, phenolic oxygen and carboxylato oxygen atoms. The IR data also indicate the coordination of a water molecule with the metal ion in the complex. The electronic spectral measurements show that Co(II) and Ni(II) complexes have tetrahedral geometry, while Cu(II) complex has square planar geometry. The powder XRD studies indicate that Co(II) and Cu(II) complexes are amorphous, whereas Ni(II) and Zn(II) complexes are crystalline in nature. Magnetic measurements show that Co(II), Ni(II) and Cu(II) complexes have paramagnetic behaviour. Antibacterial results indicated that the metal complexes are more active than the ligand.  相似文献   

9.
The tetraaquabis(ethylisonicotinate)cobalt(II) disaccharinate, [Co(ein)2(H2O)4].(sac)2, (CENS), (ein: ethylisonicotinate and sac: saccharinate) complex has been synthesized and its crystal structure has been determined by X-ray diffraction analysis. The title complex crystallizes in monoclinic system with space group P2(1)/c and Z=2. The Co(II) cations present a slightly distorted CoN2O4 octahedral environment, with equatorially coordinated water molecules and axially pyridine N-bound ethylisonicotinate ligands. The magnetic environments of Cu2+-doped Co(II) complex have been identified by electron paramagnetic resonance (EPR) technique. Cu2+-doped CENS single crystals have been studied at room temperature in three mutually perpendicular planes. The calculated results of the Cu2+-doped CENS indicate that Cu2+ ion substitute with the Co2+ ion in the host lattice. The angular variations of the EPR spectra have shown that two different Cu2+ complexes are located in different chemical environments, and each environment contains two magnetically inequivalent Cu2+sites in distinct orientations occupying substitutional positions in the lattice and show very high angular dependence. The cyclic voltammogram of the title complex investigated in dimethylformamide (DMF) solution exhibits only metal centered electroactivity in the potential range -1.0-1.25V versus Ag/AgCl reference electrode.  相似文献   

10.
Electron spin resonance spectral studies have been made on copper(II) chloride, bromide, thiocyanate and sulphate complexes with some pyridine derivatives, viz. nicotinic acid (NA), nicotinamide (NICA) and isonicotinamide (INA) in solid and DMF-solution states to see the effect of different anions on the Spin-Hamiltonian parameters at the paramagnetic site for a particular ligand. The spectra of the complexes for a particular anion are almost comparable suggesting the same local symmetry for them. Analysis of the ESR data reveals axial symmetry for all the complexes, except Cu(NA)2SO4 for which a rhombic symmetry is suggested. The study shows the interaction of solvent (DMF) molecules with copper(II) ion in the axial plane as evident from the differences in 295 and 77 K g| values. Moreover, the spectra are consistent with the complete absence or negligbly small copper(II)—copper(II) interactions (in few cases) in these complexes. The various Spin-Hamiltonian parameters calculated from ESR data indicate the presence of an unpaired electron in the dx2y2 orbital of the copper(II) ion with the additional possibility of a dxy ground state for Cu(NA)2SO4.  相似文献   

11.
Metal complexes are synthesized with Schiff bases derived from o-phthalaldehyde (opa) and amino acids viz., glycine (gly) l-alanine (ala), l-phenylalanine (pal). Metal ions coordinate in a tetradentate or hexadentate manner with these N(2)O(2) donor ligands, which are characterized by elemental analysis, molar conductance, magnetic moments, IR, electronic, (1)H NMR and EPR spectral studies. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). Based on EPR studies, spin-Hamiltonian and bonding parameters have been calculated. The g-values calculated for copper complexes at 300K and in frozen DMSO (77K) indicate the presence of the unpaired electron in the dx2-y2 orbital. The evaluated metal-ligand bonding parameters showed strong in-plane sigma- and pi-bonding. X-ray diffraction (XRD) and scanning electron micrography (SEM) analysis provide the crystalline nature and the morphology of the metal complexes. The cyclic voltammograms of the Cu(II)/Mn(II)/VO(II) complexes investigated in DMSO solution exhibit metal centered electroactivity in the potential range -1.5 to +1.5V. The electrochemical data obtained for Cu(II) complexes explains the change of structural arrangement of the ligand around Cu(II) ions. The biological activity of the complexes has been tested on eight bacteria and three fungi. Cu(II) and Ni(II) complexes show an increased activity in comparison to the controls. The metal complexes of opapal Schiff base were evaluated for their DNA cleaving activities with calf-thymus DNA (CT DNA) under aerobic conditions. Cu(II) and VO(II) complexes show more pronounced activity in presence of the oxidant.  相似文献   

12.
6‐mercaptopurine (6‐MP) is used for treating various cancers and autoimmune disorders. A few examples of transition metal complexes of 6‐MP have been shown to enhance its anticancer activity, but many remain untested. We isolated five highly stable and colored metal complexes of 6‐MP and confirmed their structures by elemental analysis, spectral, and thermal techniques. Infrared (IR) spectra revealed that 6‐MP is a bidentate ligand that interacts through sulfur and pyrimidine nitrogen in a 1:2 (M:L) molar ratio. The magnetic susceptibility and electron paramagnetic resonance (EPR) spectra for the Cu(II) complex revealed an octahedral arrangement around the metal ion with strong covalent bonding. The fully optimized geometries of the metal structures obtained using density function theory (DFT)/B3LYP calculations were used to verify the structural and biological features. DNA titration revealed that the octahedral Cu(II) complex has a critical binding constant value of Kb = 8 × 105. Docking studies using three different cancer protein receptors were used to predict the biological applications of the synthesized drug‐metal complexes. Finally, cytotoxicity assays against a myeloma cancer cell line (MM) and a colon cancer cell line (Caco‐2) revealed favorable anticancer activity for the copper complex, exceeding that of the gold‐standard chemotherapeutic cisplatin.  相似文献   

13.
Novel polymeric complexes with a potentially bidentate ligand formed by amidation of 3,5-diamino-1,2,4-triazole with acryloyl chloride were synthesized and characterized on the basis of elemental analyses, IR, 1H-NMR, UV-Vis, magnetic susceptibility measurements, molar conductance, and thermal analyses. The molar conductance data reveal that all the polymer complexes are non-electrolytes. Spectral studies reveal that the free ligand coordinates bidentate to the metal ion through the oxygen of the carbonyl and azomethine of the heterocyclic ring. Elemental analyses of the polychelates indicate the metal to ligand ratio of 1?:?1/1?:?2. On the basis of electronic spectral data and magnetic susceptibility measurements, suitable geometry has been proposed for each polymeric complex. The electron spin resonance spectral data of the Cu(II) complex showed that the metal–ligand bonds have considerable covalent character. The thermal behavior of these chelates shows that the polymer complexes lose coordinated water in the first step immediately followed by decomposition of the anions and ligand molecules in a subsequent step.  相似文献   

14.
A series of seven 2-cinnamoyl-1,3-indandiones and their metal(II) complexes were synthesized and characterized by means of spectroscopic (IR, NMR, electron absorption and emission spectroscopy) and/or single-crystal X-ray diffraction methods. The optical spectra of the organic compounds show very strong absorption in the visible region and weak fluorescence with moderate to strong Stokes shift. The effect of concentration, water addition and metal ion complexation on the optical properties was also studied. In search of potential practical application, the complexation of 2-cinnamoyl-1,3-indandiones with metal(II) ions was investigated. A series of non-charged complexes with Cu(II), Cd(II), Zn(II), Co(II) and Ni(II) was isolated and analyzed by elemental analyses and IR. Most of the complexes show presence of water molecules, most probably coordinated to the metal ion, thus forming octahedral geometry. For the paramagnetic Cu(II) complexes a distorted, flattened tetrahedral structure is proposed, basing on the EPR data. The optical properties of the metal complexes, however, do not differ appreciably from those of the free ligands.  相似文献   

15.
Synthesis and characterization of three new trinuclear metal complexes of type Cu3, Cu2Zn and Cu2Ni have been achieved by assembling simple mononuclear complexes, namely 2,2'-bipyridyl 3,4-dihydroxo benzaldehyde copper(II) complex and diethylenetriamine complexes of copper(II), nickel(II) and zinc(II) ions, through the reaction of coordinated ligands. The FAB mass spectra for the complexes show fragmentation pattern in accordance with the molecular formula. The frozen electron paramagnetic resonance (EPR) spectrum of tricopper complex shows two sets of parallel lines with approximately 2:1 ratio. The simulation has been carried out by considering dipolar interaction between the two types of copper ions present in the complex. The trimetallic complexes, Cu3, Cu2Ni and Cu2Zn show strong intercalation type of interaction with Calf thymus DNA in 0.02 mol L(-1) of phosphate buffer containing 60 mmol sodium chloride at pH 7.0 at room temperature. The binding constant is found to be in the order Cu3相似文献   

16.
Several mixed ligand Ni(II), Cu(II) and Zn(II) complexes of 2-amino-3-hydroxypyridine (AHP) and imidazoles viz., imidazole (him), benzimidazole (bim), histamine (hist) and L-histidine (his) have been synthesized and characterized by elemental and spectral (vibrational, electronic, 1H NMR and EPR) data as well as by magnetic moment values. On the basis of elemental analysis and molar conductance values, all the complexes can be formulated as [MAB]Cl except histidine complexes as MAB. Thermogravimetric studies reveal the presence of coordinated water molecules in most of the complexes. From the magnetic measurements and electronic spectral data, octahedral structure was proposed for Ni(II) and Cu(II)-AHP-his, tetrahedral for Cu(II)-AHP-him/bim/hist, but square planar for the Cu(II)-AHP complex. The g∥/A∥ calculated supports tetrahedral environment around the Cu(II) in Cu(II)-AHP-him/bim/hist and distorted octahedral for Cu(II)-AHP-his complexes. The morphology of the reported metal complexes was investigated by scanning electron micrographs (SEM). The potentiometric study has been performed in aqueous solution at 37 °C and I=0.15 mol dm(-3) NaClO4. MABH, MAB and MAB2 species has been identified in the present systems. Proton dissociation constants of AHP and stability constants of metal complexes were determined using MINIQUAD-75. The most probable structure of the mixed ligand species is discussed based upon their stability constants. The in vitro biological activity of the complexes was tested against the Gram positive and Gram negative bacteria, fungus and yeast. The oxidative DNA cleavage studies of the complexes were performed using gel electrophoresis method. Cu(II) complexes have been found to promote DNA cleavage in presence of biological reductant such as ascorbate and oxidant like hydrogen peroxide.  相似文献   

17.
New metal ion complexes were isolated after coupling with 4‐(2,4‐dihydroxy‐5‐formylphen‐1‐ylazo)‐N ‐(4‐methylpyrimidin‐2‐yl)benzenesulfonamide (H2L) drug ligand. The structural and molecular formulae of drug derivative and its complexes were elucidated using spectral, analytical and theoretical tools. Vibrational spectral data proved that H2L behaves as a monobasic bidentate ligand through one nitrogen from azo group and ionized hydroxyl oxygen towards all metal ions. UV–visible and magnetic moment measurements indicated that Fe(III), Cr(III), Mn(II) and Ni(II) complexes have octahedral configuration whereas Cd(II), Zn(II) and Co(II) complexes are in tetrahedral form. The Cu(II)complex has square planar geometry as verified through electron spin resonance essential parameters. X‐ray diffraction data indicated the amorphous nature of all compounds with no regular arrangement for the solid constituents during the precipitation process. Transmission electron microscopy images showed homogeneous metal ion distribution on the surface of the complexes with nanometric particles. Coats–Redfern equations were applied for calculating thermo‐kinetic parameters for suitable thermal decomposition stages. Gaussian09 and quantitative structure–activity relationship modelling studies were used to verify the structural and biological features. Docking study using microorganism protein receptors was implemented to throw light on the biological behaviour of the proposed drug. The investigated ligand and metal complexes were screened for their in vitro antimicrobial activities against fungal and bacterial strains. The resulting data indicated that the investigated compounds are highly promising bactericides and fungicides. The antitumour activities of all compounds were evaluated towards human liver carcinoma (HEPG2) cell line.  相似文献   

18.
Square planar complexes of the type Ni(L(1))(2), Ni(L(2))(2), Cu(L(1))(2), and Cu(L(2))(2), where L(1)H = 2-hydroxy-5-t-octylacetophenone oxime and L(2)H = 2-hydroxy-5-n-propylacetophenone oxime, have been prepared and characterized by single-crystal X-ray diffraction, cyclic voltammetry, UV/vis spectroscopy, field-effect-transistor measurements, density functional theory (DFT) and time-dependent DFT (TDDFT) calculations, and, in the case of the paramagnetic species, electron paramagnetic resonance (EPR) and magnetic susceptibility. Variation of alkyl groups on the ligand from t-octyl to n-propyl enabled electronic isolation of the complexes in the crystal structures of M(L(1))(2) contrasting with π-stacking interactions for M(L(2))(2) (M = Ni, Cu). This was evidenced by a one-dimensional antiferromagnetic chain for Cu(L(2))(2) but ideal paramagnetic behavior for Cu(L(1))(2) down to 1.8 K. Despite isostructural single crystal structures for M(L(2))(2), thin-film X-ray diffraction and scanning electron microscopy (SEM) revealed different morphologies depending on the metal and the deposition method (vapor or solution). The Cu complexes displayed limited electronic interaction between the central metal and the delocalized ligands, with more mixing in the case of Ni(II), as shown by electrochemistry and UV/vis spectroscopy. The complexes M(L(2))(2) showed poor charge transport in a field-effect transistor (FET) device despite the ability to form π-stacking structures, and this provides design insights for metal complexes to be used in conductive thin-film devices.  相似文献   

19.
New N2O2 donor type Schiff bases have been designed and synthesized by condensing acetylaceto-4-aminoantipyrine/acetoacetanilido-4-aminoantipyrine with 2-amino benzoic acid in ethanol. Solid metal complexes of the Schiff bases with Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) metal ions were synthesized and characterized by elemental analyses, magnetic susceptibility, molar conduction, FAB Mass, IR, UV-Vis., 1H NMR, and ESR spectral studies. The data show that the complexes have a composition of the ML type. The UV-Vis., magnetic susceptibility, and ESR spectral data of the complexes suggest a square planar geometry around the central metal ion, except for VO(IV) complexes, which have square-pyramidal geometry. The redox behavior of copper and vanadyl complexes has been studied by cyclic voltammetry. The nuclease activity of the above metal complexes shows that the complexes cleave DNA through redox chemistry. In the presence of H2O2, all the complexes are capable of cleaving calf thymus DNA plasmids, in order to compare the cleavage efficiency of all metal complexes in the two different ligand environments. In this assay, Cu(II), Ni(II), Co(II), and Zn(II) exhibit more cleavage efficiency than other metal ions. This article was submitted by the authors in English.  相似文献   

20.
Several new transition metal complexes derived from 1-acetyl-2-(coumariniminecarboxamide-3-yl)hydrazine (HL) have been prepared and characterized by elemental analyses, 1H-NMR, magnetic susceptibility, IR, UV, EPR and thermal analyses. Stereochemistries are proposed for the complexes on the basis of the spectral and magnetic studies. The i.r. data indicate that the carbonyl oxygen of the carboxamide constituents chelating backbone in most complexes. The visible and EPR spectral studies indicated that the Cu(II) complexes have a tetragonal geometry. From the EPR spectrum of the Cu(II) complexes, various parameters were calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号