首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of copper(II) thiosulfonate complexes have been prepared via the reaction of [Cu(Me 3tren)(OH 2)](ClO 4) 2 (Me 3tren = tris(2-methylaminoethyl)amine) with three thiosulfonate ligands (RSO 2S (-), where R = Me, Ph, and MePh) and characterized by microanalysis, FTIR spectroscopy, and X-ray crystallography. In these complexes, the distorted trigonal bipyramidal copper(II) coordination sphere is occupied by four amine nitrogen atoms from the tripodal tetramine ligand and an apically bound sulfur atom from the thiosulfonate ligand. By using the tripodal tetramine ligand the oxidation of the thiosulfonate has been restricted, allowing the isolation of the complexes. The Cu-S distances were found to be similar to those in related thiosulfate complexes, indicating coordinative interactions of similar strength. Two types of intramolecular hydrogen bonding interactions were evident which enhance the binding of the thiosulfonate to the copper(II) center. These interactions, which involve two amine N-H groups and either one or two thiosulfonate oxygens, were found to be weaker than in the corresponding thiosulfate complexes. The complex formation constants for the thiosulfonate complexes (log K f = 0.3-0.7) were found to be two orders of magnitude lower than compared to the thiosulfate analogues. This correlates well with a lower strength of intramolecular hydrogen bonding.  相似文献   

2.
Yi  Long  Zhu  Li-Na  Ding  Bin  Cheng  Peng  Liao  Dai-Zheng  Zhai  Yu-Ping  Yan  Shi-Ping  Jiang  Zong-Hui 《Transition Metal Chemistry》2004,29(2):200-204
Two novel complexes, [Cu(HL)2(H2O)]2(OH)2(ClO4)2·1.5H2O (1) and [Cu(HL)2]Cl2·4H2O (2), have been prepared by reacting copper salts with the 4-amino-3-ethyl-1,2,4-triazole-5-thione (HL) ligand in neutral solution and in HCl (6 mol L–1) medium, respectively. They were characterized by FT-IR and u.v.–vis. spectra, and the structures were determined by single crystal X-ray diffraction techniques. In both complexes, the triazole ligand chelated the metal ions through the amine and thione substituents on the five-membered ring. Complex (1) has a square-pyramidal copper(II) ion coordinated by two triazole ligands and one water molecule. Unlike (1), the Cu2+ ion in (2) displays its characteristic Jahn–Teller distortion with the distance of the Cl anions to metal ion further away than that of the triazole ligands. The most intriguing structural features of the title complexes are that the HL ligands chelate copper(II) ions through the N(1) and S(1) atoms, in a cis mode in (1) and a trans mode in (2). In both cases, self-assembled crystals, by supramolecular contacts simultaneously, form two multi-dimensional frameworks.  相似文献   

3.
Three copper(II) complexes, [Cu(L1)(H2O)(ClO4)]·0.5H2O (1), [Cu(L2)(H2O)(ClO4)]·0.5H2O (2), and [Cu(L2)(NCNC(OCH3)NH2)]ClO4 (3), where HL1 = 4-bromo-2-(-(quinolin-8-ylimino)methyl)phenol and HL2 = 1-(-(quinolin-8-ylimino)methyl)naphthalen-2-ol, have been prepared and characterized by elemental analysis, IR, UV–vis and fluorescence spectroscopy and single-crystal X-ray diffraction studies. The copper(II) centers assume five-coordinate square-pyramidal geometries in 1 and 2, whereas square planar copper(II) is present in 3. A methanol molecule has been inserted in the pendant end of the ligated dicyanamide in 3. Various supramolecular architectures are formed by hydrogen bonding, π?π, C–H?π, and lp?π interactions.  相似文献   

4.
The silver(I) coordination networks [Ag2(mu-O2CCF3)2(mu-NN)2](infinity) exist as a polymer of macrocycles or a double-stranded polymer when NN = 1,2-C6H4[NHC(O)-4-C5H4N]2 or 1,2-C6H4[NHC(O)-3-C5H4N]2, respectively. Crystal engineering of the polymers is achieved through interchain hydrogen bonds.  相似文献   

5.
6.
The existence of a dihydrogen bond (S-H...H-B) and its combination with a C-H...S hydrogen bond in an unusual cooperative effect are demonstrated from a combination of experimental and theoretical methods. This cooperative effect seems to be responsible for self-assembly of mercaptane-metallacarborane complexes such as closo-[3-Ru(eta6-C6H6)-8-HS-1,2-C2B9H10] (1) and closo-[3-Co(eta5-C5H5)-8-HS-1,2-C2B9H10] (3), which present identical supramolecular two-dimensional polymeric networks. The findings, besides documenting structurally the first S-H...(H-B)2 dihydrogen bond and the unconventional cooperative ability of a boron-attached SH group, prove that substituted carboranes have the potential to serve as building blocks for assembling complex structures.  相似文献   

7.
The reactions of K3[Cu(CN)4], 3-acetylpyridine (3-Acpy) or 4-acetylpyridine (4-Acpy) in the presence of Me3SnCl in H2O/acetonitrile media at room temperature afford the 3D-supramolecular coordination polymers (SCPs)3[Cu2CN(μ-CN)·(3-Acpy)2] 1 and 3[Cu2CN(μ-CN)·(4-Acpy)2] 2. The structures of 1 and 2 consist of Cu2CN building blocks which are connected by CN groups, forming 1D-zig-zag chains. Each chain is bonded to another chain by hydrogen bonding into a 2D-layer, which is further stacked in an interwoven mode by π–π stacking interactions and hydrogen bonds in 1 and 2, as well as Cu···Cu interactions in 1, to create supramolecular 3D-network structures. The high dimensional topologies of 1 and 2 result mainly from extensive hydrogen bonding and π–π stacking. The long wavelength absorption band at 400–420 nm in the electronic spectra of 1 and 2 is assigned to a CT from copper(I) to the Acpy ligand. Compound 2 exhibits strong luminescence at 485 and 527 nm, corresponding to MLCT and metal-centered transitions, respectively.  相似文献   

8.
9.
Through hydrothermal synthesis, Cu(2-pac)2 (2-pac?=?2-pyrazinecarboxylic acid) reacting with 4,4′-bipyridine (abbreviated for 4,4′-bpy) in 1?:?1 molar ratio afforded a porous three dimensional supramolecule containing an infinite T4(2)8(2) water tape, showing the contribution of the water tape to the stability of the crystal host and the role of cooperative association between the water tape and the crystal host in the formation of the water tape.  相似文献   

10.
11.
12.
Gold(I) and silver(I) complexes of 1-methyl-5-thio-tetrazole (1) have been prepared and the coordination chemistry of this ligand toward metal-phosphine frameworks has been explored. As indicated by IR and Raman data, ligand 1 is deprotonated and the resulted anion acts as a bidentate (S,N)-tetrazole-5-thiolato unit in the new gold(I) complexes, [Au(SCN(4)Me)(PPh(3))] (2), [{Au(SCN(4)Me)}(2)(μ-dppm)] (3), and [{Au(SCN(4)Me)}(2)(μ-dppe)] (4), while it is coordinated only through the sulfur atom as its neutral tetrazole-5-thione form in the silver(I) derivative, [Ag(HSCN(4)Me)(PPh(3))](2)(OTf)(2) (5). Further characterization of the new compounds was performed using multinuclear ((1)H, (13)C, (31)P, (19)F) NMR spectroscopy, mass spectrometry, and DSC measurements. Single-crystal X-ray diffraction studies revealed basically linear P-M-S arrangements in complexes 3-5. The bidentate (S,N) coordination pattern results in a T-shaped (S,N)PAu core in 3 and 4, whereas, in 5, a similar coordination geometry is achieved in the dimer association based on S-bridging ligand 1. Herein, weak (C)H···Au and (C)H···Ag agostic interactions were observed. An intramolecular Au···Au contact occurs in 3, while in 4 intermolecular aurophilic bonds lead to formation of a chain polymer. An intermolecular Ag···Ag contact is also present in the dimer unit of 5. Low-temperature (31)P NMR data for 5 evidenced the presence of monomer and dimer units in solution. Theoretical calculations on model of the complexes 2 and 4 are consistent with the geometries found by X-ray diffraction studies.  相似文献   

13.
A series of multinuclear Copper(I) guanidinate complexes have been synthesized in a succession of reactions between CuCl and the lithium guanidinate systems Li{L} (L = Me(2)NC((i)PrN)(2) (1a), Me(2)NC(CyN)(2) (1b), Me(2)NC((t)BuN)(2)(1c), and Me(2)NC(DipN)(2) (2d) ((i)Pr = iso-propyl, Cy = cyclohexyl, (t)Bu = tert-butyl, and Dip = 2,6-disopropylphenyl) made in situ, and structurally characterized. The di-copper guanidinates systems with the general formula [Cu(2){L}(2)] (L = {Me(2)NC((i)PrN)(2)} (2a), {Me(2)NC(CyN)(2)} (2b), and {Me(2)NC(DipN)(2)} (2d) differed significantly from related amidinate complexes because of a large torsion of the dimer ring, which in turn is a result of transannular repulsion between adjacent guanidinate substituents. Attempts to synthesis the tert-butyl derivative [Cu(2){Me(2)NC((t)BuN)(2)}(2)] result in the separate formation and isolation of the tri-copper complexes [Cu(3){Me(2)NC((t)BuN)(2)}(2)(μ-NMe(2))] (3c) and [Cu(3){Me(2)NC((t)BuN)(2)}(2)(μ-Cl)] (4c), both of which have been unambiguously characterized by single crystal X-ray diffraction. Closer inspection of the solution state behavior of the lithium salt 1c reveals a previously unobserved equilibrium between 1c and its starting materials, LiNMe(2) and N,N'-di-tert-butyl-carbodiimide, for which activation enthalpy and entropy values of ΔH(?) = 48.2 ± 18 kJ mol(-1) and ΔS(?) = 70.6 ± 6 J/K mol have been calculated using 1D-EXSY NMR spectroscopy to establish temperature dependent rates of exchange between the species in solution. The molecular structures of the lithium complexes 1c and 1d have also been determined and shown to form tetrameric and dimeric complexes respectively held together by Li-N and agostic Li···H-C interactions. The thermal chemistry of the copper complexes have also been assessed by thermogravimetric analysis.  相似文献   

14.
Comprehension of the basic concepts for the design of CO2-philic molecules is important due to the possibility for "green" chemistry in supercritical CO2 of substitute solvent systems. Lewis acid-base interactions and C-H...O weak hydrogen bonding were suggested as two key factors in the solubility of CO2-philic molecules. To isolate the stabilization energy of weak hydrogen bonding from the overall binding energy, high-level quantum mechanical calculations were performed for the van der Waals complexes of CO2 with methane, methylacetate, dimethylether, acetaldehyde, and 1,2-dimethoxyethane. Structures and energies were calculated at the MP2 level of theory using the 6-31+G(d) and aug-cc-pVDZ basis sets with basis set superposition error corrections. In addition, the single-point energies were calculated using recently developed multilevel methods. This study shows that the Lewis acid-base interaction has a significant impact on the complex stability compared to the C-H...O weak hydrogen bond. The additional stabilization energy of the cooperative weak hydrogen bond with alpha-proton of the carbonyl group was negligible on the enhancement of supercritical CO2 solubility. However, the stabilization energy was larger for the ether group, such that it may have an important role in increasing the supercritical CO2 solubility. Additional formation of cooperative weak hydrogen bonds may not further increase the solubility due to the stability reduction by steric hindrance.  相似文献   

15.
16.
Three new ionic silver complexes based on the 3,5-dimethyl-4-nitropyrazole ligand (HpzNO2) and 1:2 or 1:3 (Ag:HpzNO2) stoichiometries, [Ag(HpzNO2)2][BF4], [Ag(HpzNO2)3][SbF6] and [Ag(HpzNO2)3][PO2F2]·HpzNO2 have been prepared and structurally characterised. The linear or trigonal metallic coordination environment, the NO2 groups on the pyrazole ligand as well as the presence of counteranions of the type as , or (the latter one evolving to ) were strategically selected to produce molecular assemblies established on the basis of hydrogen-bonds (N-H?X) and π?π or coordinative interactions involving the NO2 group. The complex [Ag(HpzNO2)2][BF4] exhibited polymeric N-H?F hydrogen-bonded chains which were assembled in a 3D network by weaker coordinative Ag?O(NO2) and π(NO2)?π(NO2) interactions. In the complex [Ag(HpzNO2)3][SbF6], consistent with the three-coordinated molecular environment, the interactions were extended to give rise an open 3D cationic sub-network in which the counteranions were encapsulated. By contrast, in the related complex [Ag(HpzNO2)3][PO2F2]·HpzNO2 the presence of a fourth non-coordinated pyrazole HpzNO2 avoided the formation of a 3D network giving rise to a double-chained 1D structure.  相似文献   

17.
The Cu(III) complex Pr 4N[Cu{S 2C=( t-Bu-fy)} 2] ( 1) ( t-Bu-fy = 2,7-di- tert-butylfluoren-9-ylidene) reacts with [Cu(PR 3) 4]ClO 4 in 1:1 molar ratio in MeCN to give the dinuclear complexes [Cu 2{[SC=( t-Bu-fy)] 2S}(PR 3) n ] [ n = 2, R = Ph ( 2a); n = 3, R = To ( 3b); To = p-tolyl]. The analogue of 2a with R = To ( 2b) can be obtained from the reaction of 3b with 1/8 equiv of S 8. Compound 2b establishes a thioketene-exchange equilibrium in solution leading to the formation of [Cu 4{S 2C=( t-Bu-fy)} 2(PTo 3) 4] ( 4b) and [Cu 2{[SC=( t-Bu-fy)] 3S}(PTo 3) 2] ( 5b). Solid mixtures of 4b and 5b in varying proportions can be obtained when the precipitation of 2b is attempted using MeCN. The reactions of 1 with AgClO 4 and PPh 3, PTo 3 or PCy 3 in 1:1:4 molar ratio in MeCN afford the heterodinuclear complexes [AgCu{[SC=( t-Bu-fy)] 2S}(PR 3) 3] [R = Ph ( 6a), To ( 6b), Cy ( 6c)]. Complex 6c dissociates PCy 3 in solution to give the bis(phosphine) derivative [AgCu{[SC=( t-Bu-fy)] 2S}(PCy 3) 2] ( 7c), which undergoes the exchange of [M(PCy 3)] (+) units in CD 2Cl 2 solution to give small amounts of [Cu 2{[SC=( t-Bu-fy)] 2S}(PCy 3) 2] ( 2c) and [Ag 2{[SC=( t-Bu-fy)] 2S}(PCy 3) 2] ( 8c). Complexes 6a and b participate in a series of successive equilibria in solution, involving the dissociation of phosphine ligands and the exchange of [M(PCy 3)] (+) units to give 2a or 3b and the corresponding disilver derivatives [Ag 2{[SC=( t-Bu-fy)] 2S}(PR 3) 2] [R = Ph ( 8a), To ( 8b)], followed by thioketene-exchange reactions to give [AgCu{[SC=( t-Bu-fy)] 3S}(PR 3) 2] [R = Ph ( 9a), To ( 9b)]. Complexes 9a and b can be directly prepared from the reactions of 1 with AgClO 4 and PPh 3 or PTo 3 in 1:1:3 molar ratio in THF. The crystal structures of 3b, 6b, 6c, 7c, and 9a have been solved by single-crystal X-ray diffraction studies and, in the cases of 7c and 9a, reveal the formation of short Ag...Cu metallophilic contacts of 2.8157(4) and 2.9606(6) A, respectively.  相似文献   

18.
The anion-assisted shift of trans-cis isomerization equilibrium of a palladium(II) complex containing acetanilide functionalities brought about by allosteric hydrogen bonding interactions has been established by UV/Vis, 1H NMR, 31P NMR and ESI-MS studies.  相似文献   

19.
Reactions of sparfloxacin (Hsf) with Cu(II), in the absence or presence of auxiliary ligands (bpy, 2,2′-bipyridine; dmbpy, 4,4′-dimethyl-2,2′-bipyridine) under similar conditions, afforded three coordination complexes, [Cu(Hsf)2(ClO4)](ClO4)(CH3OH)2(H2O)3.75 (1), [Cu(Hsf)(bpy)(ClO4)](ClO4)(H2O) (2), and [Cu2(Hsf)2(dmbpy)2(ClO4)3](ClO4)(C2H5OH)3(H2O)0.75 (3). All three complexes have been structurally characterized by single-crystal X-ray diffraction. In their crystal structures, distinct extended metallosupramolecular architectures, specifically 3D (for 1), 2D (for 2), and 2D + 1D (for 3), are constructed with the aid of secondary interactions involving H-bonding and aromatic stacking.  相似文献   

20.
The manganese(I) tricarbonyl complexes (Bm(R))Mn(CO)3(R = Me, Bz, But, p-Tol) and (PhBmMe)Mn(CO)3, the first bis(mercaptoimidazolyl)borate derivatives for this metal, have been readily prepared and fully characterized. In particular, the presence of three-center-two-electron Mn...H-B interactions in these species, both in solution and in the solid state, has been investigated using a combination of IR and NMR spectroscopies and, in the case of the methyl-, tert-butyl- and para-tolyl-substituted derivatives, by X-ray crystallography. To complement these synthetic and structural studies, the tris(mercaptoimidazolyl)borate complexes (TmMe)Mn(CO)3(R = Me, Bz, But, p-Tol) and (PhTm(Me))Mn(CO)3, as well as the related pyrazolylbis(mercaptoimidazolyl)borate (pzBmMe)Mn(CO)3, have also been synthesized and characterized by a combination of analytical and spectroscopic techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号