首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Summary Batch sorption experiments of cesium, Cs+, on SiO2 . xH2O (silica gel) have been conducted with variable times of equilibration, amounts of silica gel (0.10-1.00 g), cesium concentrations (5.00 . 10-5-2.40 . 10-3M), ionic strengths (0.20-1.40M NaClO4), pH (2.50-7.70), and temperatures (273-333 K). The diffusion coefficient of Cs+ ion was calculated to be (9.19±0.86) . 10-11 m2 . s-1 under particle diffusion-controlled conditions. The sorption rate was (3.94±0.65) . 10-3 s-1 at 298 K, pH 7.70±0.05 in 0.20M NaClO4. The sorption data fits the Freundlich, Langmuir and Dubinin-Radushkevich (D-R) isotherms. Cesium sorption on 0.20 g silica gel decreased with ionic strength from (40.42±0.34)% in 0.20M NaClO4 to (6.35±0.40)% in 1.40M NaClO4, at pH(initial) 8.20±0.05. A gradual decrease in pH with increased ionic strength is consistent with a cation-exchange mechanism. Sorption of Cs+ on silica gel decreased with increased temperature, indicating an exothermic enthalpy. The presence of anions such as fluoride, carbonate, phosphate and oxalate in the aqueous medium did not influence the cesium sorption profile.  相似文献   

2.
The effects of ionic strength and of ethylenediamin et etraacetic acid (EDTA) on the sorption of uranyl ion, UO2 2+, to SiO2·xH2O (silica gel) were investigated. It was observed that pH and the ions present in the supporting electrolytes influence the ionic strength effects. The presence of different sodium salts in the concentration range (0.20 to 1.40M) suppressed the sorption of UO2 2+ in the order: NaNO3 < NaClO4 < NaCl < NaOCOCH3 < Na2SO4 [pH 2.75(±0.05)], while the presence of perchlorate salts of Li+, Na+ and Ca2+ (0.20 to 1.40M) promoted the sorption of UO2 2+ on silica gel in the order: LiClO4∼NaClO4<Ca(ClO4)2 at pH 2.80(±0.05). The ionic strength effect on UO2 2+ sorption was studied in presence of EDTA (0–1.00·10−3M) in the pH range 2.90 to 5.57. The sorption data and speciation calculation suggest negligible complexation of UO2 2+ with EDTA at I≥1.00M NaClO4. On leave from Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India.  相似文献   

3.
Sorption studies of europium(III) on hydrous silica   总被引:1,自引:0,他引:1  
Summary Sorption behavior of europium, Eu3+, on SiO2 . xH2O (silica gel) has been investigated as a function of time, the amount of silica gel, Eu3+ concentration, the ionic strength, and pH (in absence and in presence of carbonate). The sorption data were fitted to Freundlich, Langmuir and Dubinin-Radushkevich (D-R) isotherms. The sorption capacity of silica gel was determined to be in the range of (2.62-8.00) . 10-7 mol/g at pH 5.30±0.05 and 0.20M NaClO4. The mean energy of sorption was calculated to be 13.50±0.05 kJ/mol from the D-R isotherm, suggesting the involvement of ion-exchange reactions in the sorption process. Sorption of Eu3+ decreased with increased ionic strength. A gradual decrease in pH with increased ionic strength supports the involvement of an ion-exchange mechanism in the sorption process. The diffusion coefficient of Eu3+ ion on silica gel was calculated as (3.98±0.12) . 10-13 m2 . s-1 under the particle diffusion-controlled conditions.  相似文献   

4.
Summary The complexation behavior of Ni2+with ortho-silicic acid (o-SA) has been studied as a function of ionic strength (I) from 0.20 to 1.00M (NaClO4) at pcH 4.55±0.05 and 25 °C by a solvent extraction technique with bis(2-ethylhexyl) phosphoric acid (HDEHP) as the extractant. The stoichiometry of the extracted species was determined to be Ni(DEHP)2(HDEHP)2. Ni2+forms a 1:1 complex, Ni(OSi(OH)3)+, as the predominant species withconcentrations of 1.00. 10-3to 1.00. 10-2M o-SA. The stability constant (logb1) values for Ni(OSi(OH)3)+complex formation decrease with increased ionic strength. These values have been fitted with the extended Debye-Huckel expression to obtain the value of logb1=6.34±0.03 at I=0.00M. The data allowed the calculation of speciation of the Ni2+- silicate system as a function of ionic strength.  相似文献   

5.
Sorption of tracer Am3+ to silicate particles was studied as a function of pcH (4 to 9) and of ionic strength [0.20M to 1.50M (NaClO4)] at 298 K. The sorption increased with increased pcH from 4 to 6 above which saturation was observed. The insensitivity of Am3+ sorption to increased ionic strength indicates inner-sphere complexation with the surface silicate sites. The effects of different complexing anions such as carbonate, acetate, oxalate, phosphate, citrate, EDTA and humic acid, on Am3+ sorption were investigated. Synergistic enhancement in Am3+ sorption was observed in the presence of phosphate (4≤pcH≤7) and acetate (4≤pcH≤5) ligands at 0.20M NaClO4. The presence of the other ligands inhibited Am3+ sorption in the order: EDTA > citrate > oxalate > carbonate. Am3+ sorption in the presence of HA (25.00 mg/l) increased in the pcH range of 4.0 to 5.5, then decreased. Increased ionic strength enhanced Am3+ sorption in the presence of 25.00 mg/l HA for 4≤pcH≤9. The sorption increased in the presence of a mixture of HA (25.00 mg/l) and phosphate (1.00·10−3M) as compared to that of HA (25.00 mg/l) alone. The presence of Fe3+ (1.00·10−4M) enhanced Am3+ sorption at pcH∼4 but suppressed it from pcH of 5 to 9; 1.00·10−4M of Ca2+ and of UO22+ ions had no effect on the sorption profile. On leave from Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai -400 085, India.  相似文献   

6.
The sorption of UO2 2+ and phosphate on silica were simultaneously studied. The effect of contact time between the solid phase and aqueous solution, pH and ionic strength on the UO2 2+ sorption in the absence and the presence of phosphate was investigated. The effect of contact time between the solid phase and aqueous solution, pH and ionic strength on the phosphate sorption was investigated too. The isotherms of UO2 2+ and phosphate sorption at different pH values were determined. It was found that as compared with the sorption in the absence of phosphate, the sorption of UO2 2+ on silica in the presence of phosphate is increased at low pH and decreased at high pH; the abruptly increased with increasing pH in the pH range 3-6; the sorption is gradually decreased with increasing pH in the pH range 2-12; the sorption insensitive and the sorption of phosphate is sensitive to ionic strength.  相似文献   

7.
Release of long-lived radioactivity to the aquatic bodies from various nuclear fuel cycle related operations is of great environmental concern in view of their possible migration into biosphere. This migration is significantly influenced by various factors such as pH, complexing ions present in aquatic environment and sorption of species involving radionuclides on the sediments around the water bodies. 241/243Am are two major radionuclides which can contribute a great deal to radioactivity for several thousand years. In the present study, 241Am sorption on natural sediment collected from site near a nuclear installation in India, has been investigated under the varying conditions of pH (3–10) and ionic strength [I = 0.01–1 M (NaClO4)]. The sorption of Am increased with pH of the aqueous medium [10% (pH 2) to ~100% (pH 10)], which was explained in terms of the increased negative surface charge on the sediment particles. There was marginal variation in Am(III) sorption with increased ionic strength (within error limits) of the aqueous medium suggesting inner-sphere complexation/sorption process. Sediment was characterized for its elemental composition and structural phases using Energy Dispersive X-Ray (SEM-EDX) and X-Ray Diffraction (XRD) techniques. Zeta-potential measurement at I = 0.1 M (NaClO4) suggested that Point of Zero Charge (pHPZC) was ~2, indicating the presence of silica as major component in the sediment. Kurabtov plot using sorption data as a function of pH at fixed I = 0.1 M (NaClO4) indicated the presence of multiple Am(III) species present on the surface. Potentiometric titration of the suspension indicated the presence of mineral oxide like behavior and assuming a generic nature (≡XOH) for all types of surface sites, protonation–deprotonation constants and total number of sites have been obtained. The sorption data has been modeled using 2-pK Diffuse Double Layer Surface Complexation Model (DDL-SCM). ≡XOAm2+ has been identified as the main species responsible for the sorption profile.  相似文献   

8.
Sorption behavior of Am<Superscript>3+</Superscript> on suspended pyrite   总被引:1,自引:1,他引:0  
Sorption behavior of 241Am (~10−9 M) on naturally occurring mineral pyrite (particle size: ≤70 μm) has been studied under varying conditions of pH (2–11), and ionic strength (0.01–1.0 M (NaClO4)). The effects of humic acid (2 mg/L), other complexing anions (1 × 10−4 M CO3 2−, SO4 2−, C2O4 2− and PO4 3−), di- and trivalent metal ions (1 × 10−3 M Mg2+, Ca2+ and Nd3+) on sorption behavior of Am3+ at a fixed ionic strength (I = 0.10 M (NaClO4)) have been studied. The sorption of 241Am on pyrite increased with pH from 2.8 (84%) to 8.1 (97%). The sorption of 241Am decreased with ionic strength at low pH values (2 ≤ pH ≤ 4), but was insensitive in the pH range of 4–10, suggesting the formation of outer-sphere complexes on pyrite surface at lower pH, and inner-sphere complexes at higher pH values. The sorption of 241Am increased in the presence of (i) humic acid (5 < pH < 7.5), and (ii) C2O4 2− (2 < pH < 3). By contrast, other complexing anions such as (carbonate, phosphate, and sulphate) showed negligible influence on 241Am sorption. The presence of Mg2+, Ca2+ ions showed marginal effect on the sorption profile of 241Am; while the presence of Nd3+ ion suppressed its sorption significantly under the conditions of present study. The sorption of 241Am on pyrite decreased with increased temperature indicating an exothermic process.  相似文献   

9.
Sorption of NpO2 + on silicate (10.00 g/l) particles dispersed in sodium perchlorate media was studied as a function of pcH and ionic strength at 298 K. The sorption increased with increased pcH in the range of ∼6.5 to 9.2, above which saturation was observed. An increase in ionic strength from 0.20M to 1.00M (NaClO4), increased the NpO2 + sorption, which then decreased at 1.50M (NaClO4) for 7<pcH<8.5. The effects of different types of ligands on the sorption of NpO2 + to suspended silicate were investigated. The types of ligands included: (i) inorganic anions (fluoride, carbonate, phosphate (ii) N-donors (ethylenediamine, 1,10 phenanthroline (iii) carboxylic acids (oxalic acid, citric acid, iminodiacetic acid, ethylenediaminetetraacetic acid) and (iv) humic acid. A synergistic enhancement in sorption to the suspended silicate was observed for phosphate, oxalate, ethylenediaminetetraacetic acid, ethylenediamine, 1,10 phenanthroline (5<pcH<8) and humic acid (6.5<pcH<8.8). This behavior was attributed to the formation of ternary NpO2 +/silicate/ligand complexes. The effects of Ca(II) (1.00·10−3M) and Eu(III) (1.00·10−4 and 1.00·10−3M) ions on NpO2 + sorption to suspended silicate were also investigated. On leave from Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085, India.  相似文献   

10.
Complexation behavior of NpO2 + with ortho-silicic acid (o-SA) has been studied using solvent extraction at ionic strengths varying from 0.10 to 1.00M (NaClO4) at pcH 3.68±0.08 and 25 °C with bis-(2-ethylhexyl) phosphoric acid (HDEHP) as the extractant. The stability constant value (log β1) for the 1:1 complex, NpO2(OSi(OH)3), was found to decrease with increase in ionic strength of the aqueous phase [6.83±0.01 at I=0.10M to 6.51±0.02 at I = 1.00M]. These values have been fitted in the SIT model expression and compared with similar values of complexation of the metal ions Am3+, Eu3+, UO2 2+, PuO2 2+, Np4+, Ni2+ and Co2+. The speciation of NpO2 +-o-silicate/carbonate system has been calculated as a function of pcH under ground water conditions. On leave from Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085, India.  相似文献   

11.
Summary The complexation behavior of Co2+with ortho-silicic acid (o-SA) has been studied as a function of ionic strength (I) from 0.20 to 1.00M (NaClO4) at pH 4.96±0.03 and 25 °C by solvent extraction with bis(2-ethylhexyl) phosphoric acid (HDEHP) as the extractant. The stoichiometry of the extracted species was determined to be Co(DEHP)2(HDEHP)2. Co2+forms a 1:1 complex, CoOSi(OH)3+, as the predominant species witho-SA concentrations of 3.00. 10-4to 4.00. 10-3M. The stability constant (logb1) values for CoOSi(OH)3+complex decrease with the increase in ionic strength. These values were fitted with the extended Debye-Huckel expression to obtain the value of logb1at I=0.00M. The effect of aging time of the o-SA solution on logb1values for CoOSi(OH)3+complex was investigated and compared with those of the UO2OSi(OH)3+complex.  相似文献   

12.
Complex formation of humic acids (HA)n with La3+ and Eu3+ was studied. Commercial (HA)n was purified and characterized. The stability constants were determined at several pH values and 0.2?M NaClO4 ionic strength by the Shubert??s method of radiochemical ionic exchange. The slopes of the lines $ \log ((\lambda_{0} /\lambda ) - 1) = \log \beta_{\text{M,j(HA)n}}^{\exp } + {\text{j}} * \log \left[ { ( {\text{HA)}}_{\text{n}} } \right] $ were dependent on the [(HA)n]. The values of log $ \beta_{\text{M,j(HA)n}}^{\exp } $ for j?=?1 were the following: 6.29?±?0.04 (pH 4.9?±?0.4) and 7.61?±?0.03 (pH 5.9?±?0.1) for lanthanum and 7.31?±?0.01 (pH 5.9?±?0.2) for europium. Log $ \beta_{\text{M,j(HA)n}}^{\exp } $ was determined as well for higher values of the j parameter and these values were: 12.2?±?0.1 (j?=?2, pH 7.7?±?0.2), 15.6?±?0.2 (j?=?3, pH 4.9?±?0.4) and 16.05?±?0.07 (j?=?3, pH 5.9?±?0.1), for lanthanum and 13.18?±?0.03 (j?=?2, pH 5.9?±?0.1) for europium. A discussion is presented about the complex formation regarding pH and [(HA)n].  相似文献   

13.
Nano-crystalline MnO2 has been synthesized by the method of alcoholic hydrolysis of KMnO4 and its potential as a sorbent for plutonium present in the low level liquid waste (LLW) solutions was investigated. The kinetic studies on the sorption of Pu by MnO2 reveal the attainment of equilibrium sorption in 15 h, however 90 % of sorption could be achieved within an hour. In the studies on optimization of the solution conditions for sorption, it was observed that the sorption increases with the pH of the aqueous solution, attains the maximum value of 100 % at pH = 3 and remains constant thereafter. The sorption was found to be nearly independent of the ionic strength (0.01–1.0 M) of the aqueous solutions maintained using NaClO4, indicating the inner sphere complexation between the Pu4+ ions and the surface sites on MnO2. Interference studies with different fission products, viz., Cs+, Sr2+ and Nd3+, revealed decrease in the percentage sorption with increasing pH of the suspension indicating the competition between the metal ions. However, at the metal ion concentrations prevalent in the low level liquid waste solutions, the decrease in the Pu sorption was only marginally decreased to 90 % at pH = 3, the decrease being more in the case of Nd3+ than that in the case of Cs+. This study, therefore, shows nano-crystalline MnO2 can be used as a sorbent for separation of Pu from LLW solutions.  相似文献   

14.
2,4,6-Tri(2′-pyridyl)-s-triazine (TPTZ) complexes with iron(II) and ruthenium(III) were prepared. Their sorption and desorption features on silica gel have been investigated. Both complexes were strongly adsorbed. This has been utilized for separating and preconcentrating iron(II) and ruthenium(III) using TPTZ-impregnated silica gel. The chromatographic behavior of TPTZ on silica gel column was examined and found to be effective modifier for silica gel surface. The sorption capacity of silica gel for those metal-triazine complexes has been determined under static conditions and was found to be 5.28 × 10–3 mM (Fe(TPTZ)22+) and 2.9 × 10–3 mM (Ru(TPTZ)23+). Saturated methanolic solutions of KI or 25% NaClO4 solutions desorbed both complexes quantitatively from the silica gel surface.  相似文献   

15.
The interaction of U(VI) with Na-attapulgite was studied by using batch technique at different experimental conditions. The effect of contact time, solid content, pH, ionic strength and temperature on the sorption of U(VI) onto Na-attapulgite in the presence and absence of humic acid was also investigated. The results showed that the sorption of U(VI) on Na-attapulgite achieved sorption equilibrium quickly. Sorption of U(VI) on Na-attapulgite increased quickly with increasing pH at pH < 6.5, and then decreased with pH increasing at pH > 6.5. The sorption curves were shifted to left in low NaClO4 solutions as compared those in high NaClO4 solutions. The sorption was strongly dependent on pH and ionic strength. The sorption was dominated by ion exchange or outer-sphere surface complexation at low pH values, and by inner-sphere surface complexation or surface precipitation at high pH values. The thermodynamic parameters (i.e., ΔH 0, ΔS 0, and ΔG 0) for the sorption of U(VI) were calculated from the temperature dependent sorption isotherms, and the results suggested that the sorption reaction was an endothermic and spontaneous process. The Na-attapulgite is a suitable material in the removal and preconcentration of U(VI) from large volumes of aqueous solutions in nuclear waste management.  相似文献   

16.
Summary The kinetics of complexation of NiII by isocitric acid have been studied with the stopped-flow method, at 15, 25 and 35°C, ionic strength 0.20 M (NaClO4) and pH range 4.50–6.35. Under our experimental conditions, two processes are observed: the faster reaction takes place within the millisecond time range and the slower one within a few seconds.A mechanism is proposed to account for the observed behaviour. The rapid process is associated with the complexation itself and the slow one is associated with the deprotonation. For the latter process, the activation energy was determined.  相似文献   

17.
Sorption and desorption of radioeuropium on red earth and its solid components to remove organic matter was studied at pH 5.3±0.1 and 4.5±0.1, and in 0.01M and 0.001M NaClO4 solutions, respectively. Eu(III) sorption showed strong pH and humic acid concentration dependency, and NaClO4 concentration independency. The sorption increased with increasing pH and amount of HA adsorbed on red earth. The sorption of Eu(III) on red earth was mainly dominated by surface complexation. Humic acid and high pH had a great tendency to immobilize the movement of Eu(III) in red earth. Sorption-desorption hysteresis of Eu(III) on red earth indicated that the sorption was irreversible.  相似文献   

18.
Summary The effects of bentonite density and fulvic acid on the sorption and diffusion of 90Sr2+in compacted bentonite were investigated by using a capillary method. The experiments were carried out at pH 7.0±0.1 in the presence of 0.01M NaClO4. The results suggest that the sorption and diffusion of 90Sr2+in compacted bentonite decreases with increasing the density of compacted bentonite. The presence of FA enhances the sorption of Sr2+, but reduces the diffusion of Sr2+in compacted bentonite. The porosity of the compacted bentonite plays an important role in the sorption and diffusion behavior of 90Sr2+. Using the calculated effective diffusion coefficients the long-term relative concentration distribution of strontium was evaluated in compacted bentonite.  相似文献   

19.
The effect of pH and concentration on the diffusion of 137Cs in the compacted bentonite is studied with capillary method at the ionic strength of 0.1M NaClO4. The apparent diffusion coefficient increases with increasing concentrations if the sorption of radionuclides is largely dependent on the radionuclide concentrations. The apparent diffusion coefficient decreases with increasing pH because most of the radionuclide sorption on the bentonite increases with increasing pH. The interlaminary space contributes significantly to the radionuclide diffusion and sorption in compacted bentonite. The relationship of the apparent diffusion coefficient and the effective diffusion coefficient of 137Cs is also discussed.  相似文献   

20.
Summary The sorption and desorption of radionuclide 90Sr2+were investigated on untreated calcareous soil and two treated soils to remove organic matter and calcium carbonate using batch technique. The experiments were carried out at ambient condition, pH 7.8±0.1 and in the presence of 0.001M NaCl. Effects of fulvic acid and ionic strength on the sorption of 90Sr2+on calcareous soil were also studied. It was found that the sorption isotherms are linear in the strontium concentration range used herein, and the sorption of 90Sr2+on the calcareous soil can be described as a reversible sorption process and the sorption mechanism is mainly ion-exchange. The sorption is dependent on ionic strength, and fulvic acid enhances the sorption of 90Sr2+on calcareous soil. Organic matter present in the calcareous soil is a significant trap of 90Sr2+and is responsible for the sorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号