首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The 13C solvent induced chemical shifts (SICS) of the carbonyl carbon and the thermodynamic barriers to rotation about the C? N bond of N,N-dimethylbenzamide are linearly related to the solvent parameter, ET(30). A multi-parametric solvent parameter approach indicates that the SICS are influenced equally by polar effects and hydrogen-bond donor effects. Rotational barriers for N,N-dimethylbenzamide may, in principle, be determined by measurement of the 13C chemical shift of the carbonyl carbon in a particular solvent.  相似文献   

2.
We measured the 15N-, 1H-, and 13C-NMR chemical shifts for a series of aromatic diamines and aromatic tetracarboxylic dianhydrides dissolved in DMSO-d6, and discuss the relationships between these chemical shifts and the rate constants of acylation (k) as well as such electronic-property-related parameters such as ionization potential (IP), electronic affinity (EA), and the energy ε of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). The 15N chemical shifts of the amino group of diamines (δN) depend monotonically on the logarithm of k (log k) and on IP. We inferred the reactivities of diamines whose acylation rates have not been measured from their δN, and we propose an arrangement of diamines in the order of their reactivity. The 1H chemical shift of amino hydrogens (δH) and the 13C chemical shift of carbons bonded to nitrogen (δC) are roughly proportional to δN, but these shifts are not as closely correlated with log k and IP. Although the 13C chemical shifts of the carbonyl carbon of dianhydrides (δC,) varies much less than the δC and δN of diamines, δC, can be an index of acylation reactivity for dianhydrides because it is closely correlated with εLUMO. These facts indicate that the chemical shifts of diamines and dianhydrides are displaced according to their electron-donor and electron-acceptor properties, and that these chemical shifts can be used as indices of the electronic properties of monomers. Changes in reactivity caused by the introduction of trifluoromethyl groups into diamines and dianhydrides are inferred from the displacements of δN and δC © 1992 John Wiley & Sons, Inc.  相似文献   

3.
The 17O-NMR spectra of 1,4-naphthoquinone and 5-hydroxy-1,4-naphthoquinone (juglone) have been recorded in CDCl3 solution at 40°. In juglone the 17O resonance of the carbonyl peri to the OH group was displaced by 70 ppm to low frequency relative to the resonance in the para-position. It is shown that this chemical shift arises mainly from intramolecular H-bonding, the substituent and steric effects being one order of magnitude smaller. Large carbonyl 17O chemical shifts between ?34 and ?100 ppm were also observed in a series of aromatic aldehydes and ketones where intramolecular H-bonds of the C?O…?H? O type are formed. The H-bond-induced carbonyl 17O chemical shifts were linearly correlated with both the 17O and 1H chemical shifts of the OH groups. They represent a most sensitive measure of the strength of intramolecular H-bonds. The 17O resonances of the OH groups were directed to high frequency on H-bonding. Analysis of the 17O chemical shifts in 2,2′-dihydroxy-benzophenone showed clearly that the two OH groups build H-bonds simultaneously to the single carbonyl group. The 17O linewidths decreased strongly on H-bonding; the linewidth of the H-bonded carbonyl O-atom in juglone, for example, was reduced by 25% with respect to that of the free carbonyl O-atom. The carbonyl O-atom quadrupole coupling constants in juglone, evaluated from the combined use of 13C and 17O relaxation times, were 9.5 and 11.0 MHz, respectively. No correlation was observed between the H-bond-induced 17O chemical shifts and the variations in 17O quadrupole coupling constants.  相似文献   

4.
13C NMR spectroscopic studies were performed for carbonyl compounds having a hydroxyl group, a carboalkoxy group, an acetoxy group, or a carboxyl group in various solvents with different polarities for observation of their behaviors of 13C NMR chemical shifts of carbonyl carbons in solutions. It was found that the chemical shifts of the carbonyl carbons in 13C NMR have good correlation with the empirical parameter for solvent polarities, ETN, depending on the structures. Inter- or intramolecular hydrogen bonding and dipolar-dipolar interactions appear to play a key role in this observation.  相似文献   

5.
Two kinds of good linear correlations were found between the chemical shifts of saturated six‐membered azaheterocyclic N‐methylamine N‐oxides and the chemical shifts of the methiodides of their parent amines. One of the correlations occurs between the 17O chemical shift of the N+―O oxygen in the N‐oxides and the 13C chemical shift of the N+―CH3 methyl group analogously situated in the appropriate methiodide (r = 0.9778). This correlation enables unambiguous configuration assignment of the N+―O bond, even if the experimentally observed 17O chemical shift of only one N‐epimer is available, provided the 13C chemical shifts of both N+―CH3 groups in the methiodide are known and assigned; furthermore, it can be used also for the estimation of 17O chemical shifts of the N+―O oxygens in N‐epimeric pairs of N‐oxides, for which observed 17O data hardly become available. The second correlation is observed between the 13C chemical shift of the N+―CH3 methyl group in the N‐oxides and the 13C chemical shift of the N+―CH3 methyl group analogously situated in the appropriate methiodide (r = 0.9785). It can be used for safe configuration assignment of the N+―CH3 group and, indirectly, also of the N+―O bond in an amine N‐oxide, even if no 17O NMR data, and the 13C chemical shift of only one N‐epimer is available. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
A series of m‐ and p‐substituted anilides of benzoic acid, 2‐thienoic acid, and 2‐furoic acid were prepared and their 1H and 13C nmr spectroscopic characteristics were examined. In general, good correlations were observed between the chemical shifts of proton and carbon signals of the acyl aromatic rings and the Hammett σ. Plots of the chemical shift values of the carbonyl carbons of the benzanilides against those of the 2‐thienamides and 2‐furamides gave an excellent correlation and the values of the slopes are 0.79 and 0.52, respectively, in dimethyl sulfoxide‐d6. The slopes could be considered as a set of aromaticity index.  相似文献   

7.
A detailed analysis of the 13C NMR spectra of trans-stilbene and ten deuteriated trans-stilbenes has been undertaken. Some unusual deuterium isotope effects on carbon–hydrogen spin–spin coupling constants could not be explained by the ordinary primary and secondary isotope effects. The positive and negative changes of nJ(CH) were interpreted in terms of a steric effect, the vibrational influence of the C? D bond and the para-effect induced by deuterium. In this respect, deuterium behaves as a real substituent with electronic properties different from those of hydrogen. The deuterium isotope effects on 13C NMR chemical shifts and carbon–deuterium coupling constants have also been determined.  相似文献   

8.
E. Breitmaier  W. Voelter 《Tetrahedron》1974,30(21):3941-3943
The 13C chemical shifts of purines substituted in the 6 position are reported. Signals are assigned on the basis of general chemical shift rules and by proton “off-resonance” decoupling. Substituent effects (Z6i) of the substituent X in the 6 position of purine on the 13C chemical shifts of purine ring carbon atoms are determined. A linear correlation exists between the substituent effects of X on C-6 (Z66) and Pauling's electronegativity values Ex of the substituent X.  相似文献   

9.
N-Mono and N,N-dialkyl/diarylbarbituric acids exist in solution as a single tautomer. The 13C nmr spectroscopy shows that they are present in the triketo form in a number of polar and non-polar solvents. 2-Thiobarbituric acid derivatives, however, show extensive tautomerization. Their 13C chemical shift assignments were achieved by utilizing models 11a , 11c , 12b and 12d and from which relative tautomer distribution ratios were determined. These ratios were correlated with the dielectric constant of the various solvents (?). Thio-barbituric acids also formed adducts with solvents having carbonyl groups, characteristic observed only with barbiturates possessing the thione or thiophenolic group. 6-Amino and 6-methyluracils and thiouracils exist in DMSO solution as stable “ene” forms as do orotic acid, 24 , and its thio analogue 25. Compound 25 undergoes disproportionantion and tautomerization when heated or on prolonged standing in solution. Literature contradictions regarding the structure of “4,6-dihydroxypyrimidine,” 26 , were resolved and its tautomers in solution correctly assigned by 13C nmr. Anions of barbiturics and related systems exist in one of the two possible types A and B, depending on whether ring nitrogens are substituted (type A), or not (type B). Rapid H/D exchange at C5 was evident from C-deuterium coupling. The redistribution of charge through C4(C6) carbonyl groups shown by 13C shifts of carbonyl carbon atoms of up to 10 ppm as compared to the CO carbons of the neutral species was evident.  相似文献   

10.
13C-NMR. spectra of N-acylated indolines. Effect of the orientation of the carbonyl group on the chemical shift Large downfield shifts are observed in the 13C-NMR. spectra of indolines and related compounds induced by electric field effects of carbonyl and oxime groups.  相似文献   

11.
The 13C and 1H chemical shifts of the ferrocene moiety, as well as the carbonyl carbons and styrene moiety, of substituted 2-benzylidene[3]ferrocenophane-1,3-diones have been assigned. Correlations of 13C substituent chemical shifts of both carbonyl carbons with the Hammett constants have been found, and the effect of the transmission of substituent effects on these chemical shifts through the styrene moiety is discussed. An explanation is given for the different sensitivities of the carbonyl carbon chemical shifts to the electronic effect of substituents in mono- and dicarbonyl derivatives.  相似文献   

12.
A.W. Frahm  R.K. Chaudhuri 《Tetrahedron》1979,35(17):2035-2038
The 13C NMR chemical shifts of eleven hydroxy-, two hydroxymethoxy xanthones, and xanthone-C-glucoside, mangiferin, are presented and analyzed. Hydroxy substituent effects depending on substituent position as well as on shielded ring carbon position have been evaluated. Hydroxy substituent increments for xanthones are proposed. Effects of hydroxylation on carbonyl carbon shift and the methylation of hydroxy group and the corresponding shift increments which are of diagnostic value have been observed and discussed.  相似文献   

13.
1H and 13C NMR spectra of 8-hydroxyquinoline (oxine) and its 5-Me, 5-F, 5-Cl, 5-Br and 5-NO2 derivatives have been studied in DMSO-d6 solution. The 1H and 13C chemical shifts and proton–proton, proton–fluorine, carbon–proton and carbon–fluorine coupling constants have been determined. The 1H and 13C chemical shifts have been correlated with the charge densities on the hydrogen and carbon atoms calculated by the CNDO/2 method. The correlation of the 1H and 13C chemical shifts with the total charge densities on the carbon atoms is approximately linear (rH2 = 0.85, rC2 = 0.84). The proton in peri position to the nitro group in 5-NO2-oxine is an exception.  相似文献   

14.
The 13C and 119Sn NMR spectra of 33 organotin compounds of the type RSnMenCl3 ? n and related types are discussed. The substituent effects of the groups SnMe3, SnMe2Cl, SnMeCl2 and SnCl3 (and of some related groups) on the carbon chemical shifts in the alkyl group R have been determined; the SnMe3 group causes a small upfield shift of the carbon attached to it, while the other groups cause downfield shifts. The shifts show a monotonic change on replacing methyl groups in Me3Sn by chlorine atoms. The effects on carbons further removed from the tin atom are discussed. Variation in R causes little change in nJ(Sn? C) or δ(119Sn).  相似文献   

15.
Substituent effects on the 13C and 1H chemical shifts have been studied for derivatives of 3-benzylidene-2, 4-pentanedione. A significant correlation has been found between chemical shifts of the Z carbonyl group (C-2) and Hammett constants, while no correlation has been found for the E carbonyl group (C-4). Attempts have been made to determine the structural factors which influence these effects. The conformation of 3-benzylidene-2, 4-pentanediones has been determined by 13C and 1H NMR spectroscopy.  相似文献   

16.
Pyrazolone T and three derivatives have been characterized by 13C and, in part, 15N nmr at several pH values. The 13C chemical shifts have been assigned at, or near, the equivalence points and pKa values of these four compounds. Closely situatued quaternary carbon signals were assigned by means of a heteronuclear chemical shift correlation (FLOCK) experiment which is sensitive to, and was optimized for, 3-bond C-H couplings. The 13C chemical shift data indicate the existence of both tautomeric and acid-base equilibria and demonstrate that the four congeners exist in surprisingly different forms at certain common pH values.  相似文献   

17.
Cholesterol and phospholipids are major components of biological membranes. The role of cholesterol in membranes is not metabolic and is known to be a regulator of membrane fluidity which in turn regulates various biological phenomena. We have studied the nature of cholesterol and phospholipid interaction in artificial membranes using 13C NMR spectroscopy. This involved preparation of phospholipids specifically labeled with 13C in the ester carbonyl group. Though the chemical shift data did not provide very useful information the T1 and T2 measurements indicated that previously proposed H bonding between the ester carbonyl group and hydroxyl group of cholesterol seems unprobable.  相似文献   

18.
The structure of the 1:2 copolymer of divinyl ether and maleic anhydride was investigated by 13C-NMR spectroscopy. The polymer contains the bicyclic unit composed of one molecule of each monomer and the maleic anhydride unit. The carbon chemical shift for these units was calculated on the basis of the chemical shift of many model compounds. The major peaks of the cyclopolymer prepared in chloroform were consistent with the presence of the symmetrical bicyclic unit with cis junction and the trans monocyclic anhydride unit. The carbonyl carbon spectrum for the copolymer obtained in a mixed solvent of acetone and CS2 suggested the predominant formation of the unsymmetrical bicyclic unit. The polymerization process was discussed on the basis of these results.  相似文献   

19.
The 13C chemical shifts of the diazanaphthalenes have been recorded as a function of the pH value, providing classical titration curves. From these curves the pK1 and pK2 values have been determined taking into account the activity coefficients. The changes in 13C chemical shift under the influence of nitrogen protonation (Δδ) can be described by two protonation parameter sets.  相似文献   

20.
The syntheses and 13C, 17O, 29Si and 31P NMR spectra of a series of Mo(CO)4((PPh2O)2Y(R)R′) (Y(R) = P(O), Si(Me); R′=alkyl, haloalkyl, aryl) and [Mo(CO)4(PPh2O)2]2Si complexes are given. The chemical shift ranges of the cis and trans carbonyl 13C and 17O, phenyl C(1) 13C and 31P resonances are relatively large and, with the exception of the cis carbonyl 17O chemical shifts, the correlations between the chemical shifts of the various resonances are excellent. These correlations are consistent with the model of metal carbonyl 13C and 17O chemical shifts proposed by Bodner and Todd. In addition they allow the model to be extended to include the diphenylphosphinite 31P chemical shifts in these complexes. The excellent correlations may be due to the presence of the chelate ring which limits the rotation around the molybdenum-phosphorus bond and to the fact that all three groups directly bonded to the phosphorus remains constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号