首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Search for the Presence in Egg Yolk, in Flowers of Caltha palustris and in Autumn Leaves of 3′-Epilutein ( =(3R,3′S,6′R)-β,ε-Carotene-3,3′-diol) and 3′,O-Didehydrolutein ( =(3R,6′R)-3-Hydroxy-β,ε-carotene-3′-one) 3′.O-Didehydrolutein ( =(3R, 6′R)-3-hydroxy-β,ε-carotene-3′-one; 2) has been detected in egg yolk and in flowers of Caltha palustris. This is the first record for its occurrence in a plant. The compound shows a remarkable lability towards base; therefore, it may have been overlooked til now, because it is destroyed under the usual conditions of saponification of the carotenoid-esters. One of the many products formed from 2 with 1% KOH in methanol has been purified and identified as the diketone 3 ( =(3R)-3-hydroxy-4′, 12′-retro-β,β-carotene-3′,12′-dione). The identification of this transformation product from lutein might throw a new light on the metabolism of this important carotenoid in green plants. 3′-Epilutein ( =(3R,3′S,6′R)-β,ε-carotene-3,3′-diol; 1) was not detected in egg yolk, but is present besides lutein in flowers of C. palustris, thus confirming an earlier report of the occurrence of an isomeric (possibly epimeric) lutein (‘calthaxanthin’) in that plant [21]. We were not able to detect even traces of 1 or 2 in the carotenoid fraction from autumn leaves of Prunus avium (cherry), Parrotia persica, Acer montanum (maple) and yellow needles of Larix europaea (larch). α-Cryptoxanthin (4) , a very rare carotenoid, was isolated in considerable quantity for the first time from flowers of C. palustris.  相似文献   

2.
Synthesis of Optically Active Natural Carotenoids and Structurally Related Compounds. VIII. Synthesis of (3S,3′S)-7,8,7′,8′-Tetradehydroastaxanthin and (3S,3′S)-7,8-Didehydroastaxanthin (Asterinic Acid) The synthesis of all-trans-(3S,3′S)-3,3′-dihydroxy-7,8, 7′,8′-tetradehydro-β, β-carotene-4,4′-dione ( 1 ), of all-trans-(3S,3′S)-3,3′-dihydroxy-7, 8-didehydro-β,β-carotene-4,4′-dione ( 2 ) (asterinic acid = mixture of 1 and 2 ), and of their 9,9′-di-cis- and 9-cis-isomers is reported starting from (4′S)(2E)-5-(4′-hydroxy-2′, 6′,6′-trimethyl-3′-oxo-l′-cyclohexenyl)-3-methyl-2-penten-4-ynal ( 8 ). The absolute configuration (3S,3′S) for both components 1 and 2 of asterinic acid ex Asterias rubens is confirmed on the basis of spectroscopic and direct comparison.  相似文献   

3.
Absolute Configuration of Loroxanthin (=(3R, 3′R, 6′R)-β, ?-Carotene-3, 19, 3′-triol) ‘Loroxanthin’, isolated from Chlorella vulgaris, was separated by HPLC. methods in two major isomers, a mono-cis-loroxanthin and the all-trans-form. Solutions of the pure isomers easily set up again a mixture of the cis/trans-isomers. Extensive 1H-NMR. spectral measurements at 400 MHz allowed to establish the 3′, 6′-trans-configuration at the ?-end group in both isomers and the (9E)-configuration in the mono-cis-isomer. The absolute configurations at C(3) and C(6′) were deduced from CD. correlations with synthetic (9Z, 3R, 6′R)-β, ?-carotene-3, 19-diol ( 5 ) and (9E, 3R, 6′R)-β, ?-carotene-3, 19-diol ( 6 ), respectively. Thus, all-trans-loroxanthin ( 3 ) is (9Z, 3R, 3′R, 6′R)-β, ?-carotene-3, 19, 3′-triol and its predominant mono-cis-isomer is (9E, 3R, 3′R, 6′R)-β, ?-carotene-3, 19, 3′-triol ( 4 ). Cooccurrence in the same organism and identical chirality at all centers suggest that loroxanthin is biosynthesized from lutein ( 2 ).  相似文献   

4.
Cycloviolaxanthin (= (3S,5R,6R,3′S,5′R,6′R)-3.6:3′,6′-Diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene-5,5′-diol), a Novel Carotenoid from Red Paprika (Capsicum annuum) From red paprika (Capsicum annuum var. longum nigrum) cycloviolaxanthin was isolated as a minor carotenoid and, based on spectral data, assigned the symmetrical structure 8 .  相似文献   

5.
Synthesis of (3S,4R,3′S,4′R)- and (3S,4S,3′S,4′S)-Crustaxanthins and Further Compounds with 3,4-Dihydroxy β-End-groups Starting from 3 , the enantiomerically pure title compounds were synthesized in eight steps. Spectra and HPLC systems are presented that allow a distinction between these isomers.  相似文献   

6.
Circular dichroism (CD) spectroscopy was used to distinguish between the isomeric (all‐E)‐configured 3′‐epilutein ( 2 ) and 6′‐epilutein ( 8 ) to establish the absolute configuration of epilutein samples of different (natural and semisynthetic) origin, including samples of 2 obtained from thermally processed sorrel. Thus, the CD data of lutein ( 1 ) and epilutein samples ( 2 ) were compared. Our results unambiguously confirmed the (3R,3′S,6′R)‐configuration of all epilutein samples. Compound 2 was thoroughly characterized, and its 13C‐NMR data are published herewith for the first time.  相似文献   

7.
The c40-carotenoid (all-E, 2′R)-deoxy-2′-hydroxyflexixanthin (=1′,2′-dihydroxy-3′,4′-didehydro-1′,2′-dihydro-β,ψ-caroten-4-one;(2′R)- 2 ) was synthesized according to a C15 + C10 + C10 = C40 strategy. The chiral centre was introduced into the C10-end group by the enantioselective Sharpless dihydroxylation. The four building blocks were coupled by applying four consecutive Witting reactions. By comparison of the CD spectra of the synthetic (2′R)- 2 with those of 2 isolated from the gliding bacteria Taxeobacter, the configuration of natural 2 was determined as (2′R).  相似文献   

8.
We describe the synthesis of 2′-deoxy-3′,5′-ethano-D -ribonucleosides 1 – 8 (= (5′,8′-dihydroxy-2′-oxabicyclo-[3.3.0]oct-3′-yl)purines or -pyrimidines) of the nucleobases adenine, thymine, cytosine, and guanine. They differ from natural 2′-deoxyribonucleosides only by an additional ethylene bridge between the centers C(3′) and C(5′). The configuration at these centers (3S,5′R) was chosen as to match the geometry of a repeating nucleoside unit in duplex DNA as close as possible. These nucleosides were designed to confer, as constituents of an oligonucleotide chain, a higher degree of preorganization of a single strand for duplex formation with respect to natural DNA, thus leading to an entropic advantage for the pairing process. The synthesis of these ‘bicyclonucleosides’ was achieved by construction of an enantiomerically pure carbohydrate precursor 18 / 19 (Schemes 1), which was then converted to the corresponding nucleosides by known methods in nucleoside synthesis (Schemes 2 and 3). In all cases, both anomeric forms of the nucleosides were obtained in pure crystalline form, the relative configuration of which was established by 1H-NMR-NOE spectroscopy. A conformational analysis of the nucleosides with β-configuration at the anomeric center by means of X-ray and 1H-NMR (including NOE) spectroscopy show the furanose part of the molecules to adopt uniformly a 1′exo-conformation with the base substituents preferentially in the anti-range in the pyrimidine nucleosides (anti/syn ca. 2:1) distribution in the purine nucleosides (in solution).  相似文献   

9.
Luteochrome isolated from the tubers of a white-fleshed variety of sweet potato (Ipomoea batatas LAM .) has been shown by HPLC, 1H-NMR and CD spectra to consist of a mixture of (5R,6S,5′R,8′R)- and (5R,6S,5′R,8′S)- 5,6:5′,8′-diepoxy-5,6,5′,8′-tetrahydro-β,β-carotene ( 1 and 2 , resp.). Therefore, its precursor is (5R,6S,5′R,6′S)-5,6:5′,6′-diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene ( 4 ). This is the first identification of luteochrome as a naturally occurring carotenoid and, at the same time, gives the first clue to the as yet unknown chirality of the widespread β,β-carotene diepoxide. These facts demonstrate that the enzymic epoxidation of the β-end group occurs from the α-side, irrespective of the presence of OH groups on the ring.  相似文献   

10.
Synthesis and X-Ray Structure of (6′RS,8′RS,2E)- and (6′RS,8′SR,2E)-3-Methyl-3-(2′,2′,6′-trimethyl-7′-oxabicyclo[4.3.0]non-9′-en-8′-yl)-2-propenal ([(5RS,8RS)- and (5RS,8SR)-5,8-Epoxy-5,8-dihydro-ionylidene]acetaldehyde) To check our previous spectroscopic assignments of the structures of trans- and cis-substituted furanoid end groups of carotenoid-5,8-epoxides, we now have synthesized the title compounds. An X-ray structure determination of a single crystal of the trans-isomer (±)- -10A is in agreement with the 1 H-NMR spectroscopic arguments: isomers with Δδ (H? C(7), H? C(8)) = 0.15–0.22 ppm and J > 1.4 for H? C(7) belong to the cis-series; Δδ in trans-compounds is < 0.07 ppm, and H? C(7) appears as a broad singulett.  相似文献   

11.
1,2-Epoxycarotenoids: Synthesis, 1H-NMR and CD Studies of (S)-1,2-Epoxy-1,2-dihydrolycopene and (S)-1′,2′-Epoxy-1′, 2′ -dihydro-γ-carotene The synthesis of (S)-1,2-epoxy-1,2-dihydrolycopene ((S)- 1 ) and (S)-1′, 2′ -epoxy- 1′, 2′ -dihydro-γ-carotene ((S)- 2 ) are described. The CD spectra of the (all-E)-isomers and of the isomers (7Z, S)- 1 and (7′Z, S)- 2 are discussed. The comparison of the CD spectra of the synthetic (S)- 1 and the compound isolated from the tomatoes proves the (S)-configuration of the natural product.  相似文献   

12.
Carotenoids with 7-Oxabicyclo[2,2.1]heptyl End Groups. Attempted Synthesis of Cycloviolaxanthin ( = (3S,5R,6S,3′S,5′R,6′R)-3,6:3′,6′- Diepoxy-5,6,5′,6′-tetrahydro-β,β-carotin-5,5′-diol) Starting from our recently described synthon (+)- 24 , the enantiomerically pure 3,6:4,5:3′,6′:4′,5′-tetraepoxy-4,5,4′,5′-tetrahydro-ε,ε-carotene ( 34 ) and its 15,15′-didehydro analogue 32 were synthesized in eleven and nine steps, respectively (Scheme 4). Chiroptical data show, in contrast to the parent ε,ε-carotene, a very weak interaction between the chiral centers at C(5), C(5′), C(6), C(6′), and the polyene system. Diisobutylaluminium hydride reduction of 32 lead rather than to the expected 15,15′-didehydro analogue 35 of Cycloviolaxanthin ( 8 ), to the polyenyne 36 (Scheme 5). We explain this reaction by an oxirane rearrangement leading to a cyclopropyl ether followed by a fragmentation to an aldehyd on the one side and an enol ether on the other (Scheme 6). This complex rearrangement includes a shift of the whole polyenyne chain from C(6), C(6′) to C(5), C(5′) of the original molecule.  相似文献   

13.
The synthesis of sarcinaxanthin ((2R,6R,2′R,6′R)- 1 ), a symmetrical C50-carotenoid with two γ-end groups, isolated from Sarcina lutea and from Cellulomonas biazotea as major pigment, was based on the strategy C20 + C10 + C20 = C50 using camphoric acid as starting material for the C20-end group 3. The key step of the synthesis is a ring enlargement of the cyclopentane derivative 10 with 2,4,4,6-tetrabromocyclohexa-2,5-dien-1-one (TBCO) to give the cyclohexane derivative 11 (Scheme 1). The spectroscopic data of the synthetic compound are in full agreement with the data of the isolated product and give the final proof for the (2R,6R,2′R,6′R) chirality of natural sarcinaxanthin.  相似文献   

14.
The temperature dependent CD. spectra of (3S, 3′R)- and (3S, 3′S)-adonixanthin are compared with those of (3R, 3′R)-zeaxanthin ( 1 ) and (3S, 3′S)-astaxanthin ( 2 ). The room temperature spectra of 1 and 2 are quite similar. On cooling to ?180° the CD. of 1 simply intensifies, the CD. of 2 changes sign and becomes also very intense. The room-temperature CD. of (3S, 3′R)-adonixanthin ( 3 ) resembles closely those of 1 and 2 at room temperature. On cooling, however, it becomes weak and changes strongly its shape. With (3S, 3′S)-adonixanthin ( 4 ) it is the low-temperature spectrum which resembles that of 2 at low temperature, whereas the room-temperature spectrum is weak and quite different in shape. These observations can be explained with temperature dependent equilibria where the end groups are twisted out of the plain of the chain thereby conferring chirality to the conjugated system.  相似文献   

15.
Technical Procedures for the Synthesis of Carotenoids and Related Compounds from 6-Oxo-isophorone. IV. A Novel Concept for the Synthesis of (3RS, 3′RS)-, (3S, 3′S)- and (3R, 3′R)-9,9′-dicis-7,8,7′,8′-Tetradehydroastaxanthin Starting from readily available intermediates of the synthesis of astaxanthin, (3RS, 3′RS)-, (3R, 3′R)- and (3S, 3′S)-9,9′-di-cis-tetradehydroastaxanthin ( 1, 1a and 1b , resp.) were synthesized, 1 and 1b for the first time. Key features of this concept are: a) use of the unprotected, acetylenic phosphonium salts 8–12 , b) a two-step synthesis with 47% overall yield, and c) good chemical and optical purity of the end products.  相似文献   

16.
Stereochemical Correlations between (2R,4′R,8′R)-α-Tocopherol, (25S,26)-Dihydroxycholecalciferol, (–)-(1S,5R)-Frontalin and (–)-(R)-Linalol The optically active C5- and C4-building units 1 and 2 with their hydroxy group at a asymmetric C-atom were transformed to (–)-(1S,5R)-Frontalin ( 7 ) and (–)-(3R)-Linalol ( 8 ) respectively; 1 and 2 had been used earlier in the preparation of the chroman part of (2R,4′R,8′R)-α-Tocopherol ( 6a , vitamin E), and for introduction of the side chain in (25S,26)-Dihydroxycholecalciferol ((25S)- 4 ), a natural metabolite of Vitamin D3. The stereochemical correlations resulting from these converions fit into a coherent picture with those correlations already known from literature and they confirm our earlier stereochemical assignments. A stereochemical assignment concerning the C(25)-epimers of 25,26-Dihydroxycholecalciferol that was in contrast to our findings and that initiated the conversion of 1 and 2 to 7 resp. 8 for additional stereochemical correlations has been corrected in the meantime by the authors [26].  相似文献   

17.
Carotenoids mit 7-Oxabicyclo[2.2.1]heptyl-End Groups. Synthesis of (2S,5R,6S,2′S,5′R,6′S)-2,5:2′5′-Diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene Mukayama's ester 6 (methyl (1S,2R,5S)-2,5-epoxy-2,6,6-trimethylcyclohexane-1-carboxylate) was transformed in a few conventional steps into the title compound 14 . Its CD curve was found to be significantly different from that of the analogous 3,6-epoxide, a fact we tentatively lake as an indication of a (weak) electronic interaction between the ring O-atom and the π-orbitals of the polyene chain.  相似文献   

18.
5-(α-Fluorovinyl)tryptamines 4a, 4b and 5-(α-fluorovinyl)-3-(N-methyl-1′,2′,5′,6′-tetrahydropyridin-3′- and -4′-yl) indoles 5a, 5b were synthesized using 5-(α-fluorovinyl)indole ( 7 ). The target compounds are bioisosteres of 5-carboxyamido substituted tryptamines and their tetrahydropyridyl analogs.  相似文献   

19.
The 1,2′,3,3′,5′,6′-hexahydro-3-phenylspiro[isobenzofuran-1,4′-thiopyran] ring system ( 2a ) has been prepared from o-bromobenzoic acid. The 1,2′,3,3′,5′,6′-hexahydro-3-phenylspiro[isobenzofuran-1,4′-pyran] ring system ( 3a ) has been prepared from 2-bromobenzhydrol methyl ether. Several 3-(dimethylaminoalkyl) derivatives of both 2a and 3a were prepared by lithiation followed by alkylation.  相似文献   

20.
(S)-5,5,5,5′,5′,5′-Hexafluoroleucine ((S)- 13 ) of 81 % ee is prepared from hexafluoroacetone ( l ) and ethyl bromopyruvate (= ethyl 2-oxopropanoate) in 7 steps with an overall yield of 18% (Schemes 1 and 2). Key step in this sequence is the highly enantioselective reduction of the carbonyl group in α-keto ester 4 either by bakers' yeast (91 % ee) or by ‘catecholborane’ 6 utilizing an oxazaborolidine catalyst, yielding hydroxy ester (R)- 5 with 99% ee. The absolute configuration was determined by X-ray analysis of the HCl adduct (S,R)- 9b of (2S)-N-[(R)- l-phenylethyl]-5,5,5,5′,5′,5′-hexafluoroleucine ethyl ester.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号