首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A brief résumé is given of the role of structural heterogeneity, magnetic dipolar couplings, molecular structure, and molecular motion in determining the 1H NMR spectra and relaxation properties of heterogeneous solids such as semicrystalline polymers. Measurements of 1H spin-lattice relaxation in laboratory (T1) and rotating frames (T) are reported for a number of solid polyolefin samples. These include solution-crystallized and melt-crystallized polyethylene, annealed and quenched isotactic polypropene, and isotactic polybut-1-ene. In addition, broad-line 1H spectra, both normal and partially (T) relaxed, are reported for these materials as well as a number of pulsed NMR experiments having the philosophy of the so-called Goldman–Shen experiment. Spin-lattice relaxation (T1) for all samples is a single exponential process, whereas rotating-frame relaxation comprises three exponential processes both on-resonance (θ = 90°) and off-resonance at the magic angle (θ = 54.7°), with the latter generally being much slower. The spectra show clearly the existence of components having differing degrees of mobility and, with the exception of the solution-crystallized polyethylene, the partially (T) relaxed spectra indicate a correlation between breadth of resonance line and magnitude of T. The Goldman–Shen-type experiments indicate a spin-diffusional transport of magnetization between the different spectral and (T) components. A computer program has been used to simulate the NMR behavior of a three-region system comprising repeating units of infinite lamellae of different widths, each region having different intrinsic relaxation times and spin diffusion coefficients. The results demonstrate that the observed 1H NMR behavior of these samples can be interpreted in terms of this model and that, inter alia, the long-time T behavior reflects, qualitatively, the time taken for magnetization to diffuse a distance of the order of the dimensions of the region to which it corresponds.  相似文献   

2.
We investigate relaxation dynamics in a series of six‐arm star/linear 1,4‐polybutadiene blends with mechanical rheometry measurements. Blend systems are formulated to systematically probe constraint release and arm relaxation dynamics. Zero shear viscosity and terminal relaxation times of star/linear polymer blends with fixed star arm molecular weights (Ma) and compositions (?S) are found to follow nonmonotonic dependencies on the linear polymer molecular weight (ML). At low values of ?S, at least two scaling regimes are apparent from the data (ξ0M and ξ0M), where ξ0 refers to the zero shear viscosity or terminal relaxation time of the blend. The two regimes are separated by a critical linear polymer molecular weight M* that is more than 20 times larger than the critical molecular weight for entanglements. When the linear polymer contribution to blend properties is removed, a clear transition from dilution dynamics, ξ0M, to Rouse‐like constraint‐release dynamics, ξ0M, is apparent at low values of ?S. At higher ?S values, a new activated constraint‐release dynamic regime is evident in which ξ0M and ξ0 ~ ?, where α changes continuously from approximately 2 to 0.5 as ?S increases and β varies from 2.0 to 1.0 as ML increases. The experimental results are compared with theoretical predictions based on a drag coupling model for entangled polymer liquids. All features observed experimentally are captured by this model, including the value of M* for the transition from dilution to Rouse constraint‐release dynamics. Predictions of the drag coupling model are also compared with published data for the zero shear viscosity and terminal relaxation time in bidisperse linear polymer blends and pure entangled starlike molecules. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2501–2518, 2001  相似文献   

3.
Some results are reported on the linear viscoelastic properties of polybutadienes with narrow-molecular-weight distributions. The zero shear viscosity η0 varies as M3.4 in the linear samples, and viscosity enhancement is found in star-branched samples with long arms, in good agreement with results reported earlier by Kraus and Gruver. The temperature coefficient of viscosity appears to be slightly larger in stars when the arms become long. The steady state recoverable compliance J is 2.1 × 10 ?7 cm2/dyn in linear samples of high molecular weight, but it increases to values as much as 10 times larger in the stars. The plateau modulus G, obtained from a composite curve for the linear samples, is 1.32 × 107 dyn/cm2. The terminal relaxation spectrum of the stars is too broad to allow an evaluation of plateau modulus.  相似文献   

4.
Relaxation dynamics of salt‐free, aqueous solutions of sodium poly(styrene sulfonate) (NaPSS) were investigated by mechanical rheometry and flow birefringence measurements. Two semidilute concentration regimes were studied in detail for a range of polymer molecular weights. At solution concentrations c < 10 mg mL, limiting shear viscosity η0 was found to scale with molecular weight and concentration as η0c0.5Mw over nearly two decades in concentration. At higher solution concentrations, c > 10 mg mL, a change in viscosity scaling was observed η0 ∼ c1.5M, consistent with a change from simple Rouse dynamics for unentangled polyions to near‐perfect reptation dynamics for entangled chains. Characteristic relaxation times τ deduced from shear stress and birefringence relaxation measurements following start‐up of steady shearing at high rates reveal very different physics. For c < 10 mg mL, both methods yield τ ∼ c−0.42M and τ ∼ c0M for c > 10 mg mL. Curiously, the concentration scalings seen in both regimes are consistent with theoretical expectations for salt‐free polyelectrolyte solutions undergoing Rouse and reptation dynamics, respectively, but the molecular weight scalings are not. Based on earlier light scattering studies using salt‐free NaPSS solutions, we contend that the unusual relaxation behavior is likely due to aggregation and/or coupled polyion diffusion. Simultaneous stress and birefringence measurements suggest that in concentrated solution, NaPSS aggregates are likely well permeated by solvent, supporting a loose collective of aggregated chains rather than the dense polymer aggregates previously supposed. Nonetheless, polyion aggregates of either variety cannot account for the inverse dependence of relaxation time on polymer molecular weight for c < 10 mg mL. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 825–835, 1999  相似文献   

5.
Monodisperse porous particles of poly(divinylbenzene) prepared by the activated swelling method have been investigated by solid‐state 13C crosspolarization magic‐angle spinning (CPMAS) nuclear magnetic resonance (NMR) relaxation measurements. Homopolymeric combinations of two porogens (toluene and 2‐ethylhexanoic acid) and two monomers (meta‐ and para‐divinylbenzene) were studied. Residual vinyl groups were systematically reacted with increasing amounts of bromine, producing 20 different polymers samples for which we measured crosspolarization times, TCH, proton rotating frame spin‐lattice relaxation, T, 13C spin‐lattice relaxation, T, and proton spin‐lattice relaxation, T. These parameters were chosen to reflect expected changes in a wide range of frequencies of motion as a function of structure. Relative differences in the molecular mobility of the major functional groups (aromatic, vinyl and aliphatic) is related to initial reactants used, vinyl concentration, relative reactivity of vinyl groups, distribution of vinyl groups, pore structure, and degree of crosslinking. Variable temperature 1H combined rotation and multiple pulse NMR (CRAMPS) was used to derive activation energies for selected samples via measurement of the proton spin‐lattice relaxation time, T. Irreversible thermal effects were observed in ambient temperature relaxation after heating to temperatures in the range of 393–418 K. Simple univariate statistical analyses failed to reveal consistent correlations among the known variables. However, the application of more sophisticated multivariate and neural network analyses allowed excellent structure–property predictions to be made from the relaxation time data. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1307–1328, 1999  相似文献   

6.
Cationic polymerization of tetrahydrofuran (THF) in CH2Cl2 solvent and in mixed CH2Cl2/CH3NO2 solvent was initiated with 1,3-dioxolan-2-ylium cations with AsF and SbF anions. Dissociation constants of the polytetrahydrofuranium ion pairs into ions were measured (e.g., KD = 1.5 × 10?5M at 25°C and [THF]0 = 7.0M; CH2Cl2 solvent) and were found to be more than 100 times lower than in CH3NO2 solvent at the same [THF]0 and temperature. The rate constants k and k, measured for degrees of dissociation ranging from 0.03 to 0.35 in CH2Cl2, were the same within an experimental error of measurements (±15% of the value of kp). Dependence of k( = k = k) on the dielectric constant was a monotonous function in three different solvents, namely, CCl4, CH2Cl2, and CH3NO2, which covered a large range of dielectric constants of the medium (from D = 5 to D = 22) and degrees of dissociation of the macroion pairs, α (from 0.03 to more than 0.70). Thus a decrease in the dielectric constant increases the rate constant k in the whole range of studied polarities of the medium. This result confirms an earlier conclusion that the rate constant of propagation does not depend on the state of aggregation of ions and k = k.  相似文献   

7.
Small- and intermediate-angle (0.006 < Q < 0.25 Å) neutron scattering experiments have been performed on polyethylene terephthalate (PET). Amorphous and semicrystalline samples with deuterated PET molecular weights of 24,200 and 40,500 were prepared. The average value of R/M determined in the small-angle region for the amorphous samples is 0.406, in close agreement with the experimental θ-solvent (0.398–0.420) and theoretical (0.394) values for unperturbed dimensions. The intermediate-angle results for the amorphous sample are consistent with the random coil prediction to Q = 0.08 Å, but beyond this Q value there is some deviation from Gaussian behavior. The semicrystalline samples show a decrease in the radius of gyration as measured in the small-angle region and an increase in intensity (when compared to the amorphous data) in the intermediate-angle region, especially for the low-molecular-weight material. These results suggest that crystallization in PET is accompanied by greater molecular reorganization than has previously been observed in most bulk polymers.  相似文献   

8.
Electrooptic (Kerr effect) relaxation experiments, designed to measure the rotational diffusivity of collagen (rodlike) molecules in aqueous poly(ethyleneoxide) (amorphous) semidilute solutions under various conditions have been performed. The experimental results have been compared with the predictions of a previously derived model giving the rotational diffusivity of dilute rods in semidilute amorphous polymer solutions as a function of rod length and amorphous polymer concentration. Excellent agreement is found between the predicted scaling Dr ~ ?L?7 (Dr = rod rotational diffusivity, pip = polymer weight fraction, and L = rod length) and the experiments.  相似文献   

9.
The miscibility and phase behavior in a binary blend of isotactic polystyrene (iPS) and poly(cyclohexyl methacrylate) (PCHMA) were investigated by differential scanning calorimetry, optical microscopy (OM), and solid‐state 13C cross‐polarity/magic‐angle spinning NMR. The iPS/PCHMA blend was miscible when all compositions showed a single composition‐dependent glass‐transition temperature (Tg) and when the blend went through a thermodynamic phase transition upon heating to above the lower critical solution temperature as determined by OM measurements. The 1H NMR spin‐relaxation times in the laboratory frame (T) and in the rotating frame (T) for iPS/PCHMA blends with various compositions and neat components were directly measured through solid‐state13C NMR. The results of T indicated that the blends are homogeneous, at least on a scale of 75–85 nm, confirming the miscibility of the system. The single decay and composition‐dependent T values for each blend further demonstrated the blends are homogeneous on a scale of 2.5–3.5 nm. The results suggested that iPS and PCHMA are intimately mixed at the molecular level within the blends at all compositions. The tacticity of polystyrene does not seem to adversely influence the miscibility in blends of iPS/PCHMA. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 772–784, 2003  相似文献   

10.
The concept of the equalization of atomic electronegativities accompanving molecule formation is applied to a study of the electronic structure of polyhedral clusters of main-group atoms such as Ge, Sn, Pb, Tl, and Bi. Emphasis is placed upon charged clusters such as Sn9?x Pb(x = 0 → 9), Sn9-xGe, Sn8?xPbx Tl5?, Sn2Bi, SnTe, etc. The role of the relativistic spin-orbit splitting of an np shell into np1/2 and np3/2 subshells in modifying atomic and hence molecular electronegativities is discussed. Correlations are made between calculated charge distributions and observed199 Sn NMR chemical shifts for clusters of a given size and charge. It is concluded that a useful picture of charge distributions in these clusters may be obtained from electronegativity equalization considerations.  相似文献   

11.
(S)‐1‐Cyano‐2‐methylpropyl‐4′‐{[4‐(8‐vinyloxyoctyloxy)benzoyl]oxy}biphenyl‐ 4‐carboxylate [ (S)‐11 ] and (R)‐1‐cyano‐2‐methylpropyl‐4′‐{[4‐(8‐vinyloxyoctyloxy)benzoyl]oxy}biphenyl‐4‐carboxylate [( R)‐11 ] enantiomers, both greater than 99% enantiomeric excess, and their corresponding homopolymers, poly[ (S)‐11 ] and poly[ (R)‐11 ], with well‐defined molecular weights and narrow molecular weight distributions were synthesized and characterized. The mesomorphic behaviors of (S)‐11 and poly[ (S)‐11 ] are identical to those of (R)‐11 and poly[ (R)‐11 ], respectively. Both (S)‐11 and (R)‐11 exhibit enantiotropic SA, S, and SX (unidentified smectic) phases. The corresponding homopolymers exhibit SA and S phases. The homopolymers with a degree of polymerization (DP) less than 6 also show a crystalline phase, whereas those with a DP greater than 10 exhibit a second SX phase. Phase diagrams were investigated for four different pairs of enantiomers, (S)‐11 /( R)‐11 , (S)‐11 /poly[ (R)‐11 ], and poly[ (S)‐11 ]/poly[ (R)‐11 ], with similar and dissimilar molecular weights. In all cases, the structural units derived from the enantiomeric components are miscible and, therefore, isomorphic in the SA and S phases over the entire range of enantiomeric composition. Chiral molecular recognition was observed in the SA and SX phases of the monomers but not in the SA phase of the polymers. In addition, a very unusual chiral molecular recognition effect was detected in the S phase of the monomers below their crystallization temperature and in the S phase of the polymers below their glass‐transition temperature. In the S phase of the monomers above the melting temperature and of the polymers above the glass‐transition temperature, nonideal solution behavior was observed. However, in the SA phase the monomer–polymer and polymer–polymer mixtures behave as an ideal solution. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3631–3655, 2000  相似文献   

12.
Isomerization of oxime molecular ions into nitrone molecular ions upon electron impact does not generally occur, but it was established with the aid of deuterium labelling that it is essential for loss of CH from o-methylbenzaldoxime.  相似文献   

13.
Loss of CH, CH4, C2H4, C3H, C3H6 and C3H7 from the molecular ions of a number of 13C-labeled analogs of 4,4-dimethyl-1-pentene was studied both in normal (source) 70-eV electron impact (EI) spectra dn in metastable spectra. For loss of CH in the source, 96% of the methyl comes frm positions of 5, 5′ and 5″, while the remainder comes from position 1. In the metastable spectra, loss of C-1 (16%) and C-3 (9%) is increasing in importance. The loss of ethylene is a particular case: either C-1 or C-3 are lost with any other C-atom from positions 2,5,5′, and 5″ (8 × 10%) in the metastable spectra, the probability for simultaneous loss of C-1 and C-3 being 6%. If C-1 seems to these two positions become completely equivalent in the metastable time range. The T-values (kinetic energy release) for the different positions show small, but statisticaly different values and a small isotope effect. Loss of C3H5 (allylic cleavage) is 100% C-1, C-2 and C-3, i.e., no evidence for skeletal rearrangement is seen. This is also true for loss of C3C6 (McLafferty rearrangement) within the source, but in metastable decay the other positions gain in importance. The neutral fragment C3H appears to be the the result of consecutive loss of CH and C3H4, rather than a one-step loss of propyl radical or the inverse reactions sequence. No metastable reaction can be seen for this reaction. Decomposition of labeled C6H and C5H secondary ions occurs in an essentially random fashion.  相似文献   

14.
A treatment based on the field‐theoretic formalism of Bohm and Pines is presented which reproduces theoretically the essential features of the Mott–Edwards–Sienko relation, na∼¼, for the location of the metal–insulator transition in doped dielectric media, where nc is the critical electron concentration and a is the effective radius. The model allows a study to be made of the dopant electronic wave function from the localized insulating state through to the metallic regime. The effective interparticle interaction shows Friedel oscillations and, at short range, is close to the Thomas–Fermi form. The doping dependence of the electronic hyperfine interaction, total dielectric constant, and ionization energy for a disordered collection of s‐state one‐electron atoms in a structureless dielectric medium are derived and both are found to be in satisfactory qualitative agreement with experiment. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 71: 111–120, 1999  相似文献   

15.
The n ionization energies I and the gas-phase basicities GB of CH3-, Cl-, or CN-substituted quinuclidines have been measured by PE and ICR spectroscopy. The dependence of the shifts ΔI and ΔGB (relative to the values of the parent molecule) allow conclusions about the charge dispersal accompanying the n ionization or the protonation of quinuclidine in the gas phase. The agreement with the results of a minimal basis set ab initio calculation is excellent. Comparison of the solution pKa values with either I or GB reveals that 2-substituted quinuclidines exhibit sizeable solvent-induced proximity effects, i.e. that the corresponding quinuclidinium ions are more acidic in solution than expected on the basis of the gas-phase basicities. This agrees with earlier results concerning 2-substituted pyridines.  相似文献   

16.
Orientation angle and stress‐relaxation dynamics of entangled polystyrene (PS)/diethyl phthalate solutions were investigated in steady and step shear flows. Concentrated (19 vol %) solutions of 0.995, 1.81, and 3.84 million molecular weight (MW) PS and a semidilute (6.4 vol %) solution of 20.6 million MW PS were used to study the effects of entanglement loss on dynamics. A phase‐modulated flow birefringence apparatus was developed to facilitate measurements of time‐dependent changes in optical equivalents of shear stress (n12 ≈ Cσ) and first normal stress differences (n1 = n11 ? n22 ≈ CN1) in a planar‐Couette shear‐flow geometry. Flow birefringence results were supplemented with cone‐and‐plate mechanical rheometry measurements to extend the range of shear rates over which entangled polymer dynamics are studied. In slow > ) steady shear‐flow experiments using the ultrahigh MW polymer sample (20.6 × 106 MW PS), steady‐state n12 and n1 results manifest unusual power‐law dependencies on shear rate [n12,ss 0.4 and n1,ss 0.8]. At shear rates in the range τ < < τ, steady‐state orientation angles χSS are found to be nearly independent of shear rate for all but the most weakly entangled materials investigated. For solutions containing the highest MW PS, an approximate plateau orientation angle χp in the range 20–24° is observed; χp values ranging from 14 to 16° are found for the other materials. In the start‐up of fast steady shear flow ˙ ≥ τ), transient undershoots in orientation angle are also reported. The molecular origins of these observations were examined with the help of a tube model theory that accommodates changes in polymer entanglement density during flow. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2275–2289, 2001  相似文献   

17.
18.
A quasiclassical trajectory surface hopping method has been used to study H(v) + H2 → H + H for v = 0, 3, 7, 10, 13, and 17 with an emphasis on determining the H internal energy and angular momentum distributions for high v. For v = 13 and 17, significant cross sections are found for producing H at energies above its dissociation energy. An average metastable H lifetime of 11.5 ps for v = 13 and 4.7 ps for v = 17 is found, but there is also a much longer lived component to the lifetime distributions that is more important for v = 13 than for v = 17. Some of the longer lived metastables correspond to high angular momentum orbiting states of H, but other sources of metastability are also present.  相似文献   

19.
When a cation exchange membrane is immersed in a cationic polyelectrolyte solution to form a thin layer on the membrane surface, the membrane properties are changed: permselectivity between cations with different electric charges (a relative transport number of the calcium ions to sodium ions, P), current efficiency, and electric resistance of the membrane. Here the more compact the cationic polyelectrolyte layer, the more outstanding the change in permselectivity. To make a more compact layer, an electrodeposition method was adopted and a change in the permselectivity of the resultant cation exchange membrane was investigated. By using the electrodeposition method a strongly basic polyelectrolyte with a larger molecular weight effectively changed the permselectivity of the cation exchange membrane: the P value dropped to about 0.3 from about 2.5 of the P of the untreated membrane during electrodialysis of the sodium chloride—calcium chloride system, and an increase in the electric resistance of the membrane (i.e., organic fouling) due to a cationic surface-active agent could be prevented. It is noteworthy that by using the strongly basic polyelectrolyte with a larger molecular weight the electrodeposition method was effective, whereas the immersion method was ineffective. Furthermore, even with the electrodeposition method the cationic polyelectrolyte which had a relatively smaller molecular weight resulted in a more remarkable change in the P value than did that with a larger molecular weight. In the electrodeposition method the amount of polyelectrolyte cohered onto the membrane surface in creased with an increase in the concentration of the polyelectrolyte, and weakly basic polyelectrolyte, and weakly basic polyelectroyte (polyethyleneimine) was also available independent of its molecular weight.  相似文献   

20.
Ultradrawing of films of high-molecular-weight polyethylene (M?w = 1.5 × 106) produced by gelation crystallization from solution is discussed. The influence of the initial polymer volume fraction (?) on the maximum draw ratio (λmax) of the dried films is examined in the temperature region from 90–130°C. The results can be described very well by the relation λmax = λ ??1/2 where λ is the (temperature-dependent) maximum draw ratio of the melt-crystallized film. An attempt is made to discuss the marked influence of the initial polymer volume fraction on λmax in terms of the deformation of a network with entanglements acting as semipermanent crosslinks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号