首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The 1H-NMR spectra of symmetric compounds with two phosphorus atoms of the type R? X? P? Y? P? X? R, R = CH3, C2H5, X = —, O, NCH3, NCH2—, Y = NCH3, have been determined. After elimination of eventual couplings within the alkyl protons these spectra always show triplets in the case of trivalent phosphorus and doublets in the case of pentavalent phosphorus atoms. Since this paper establishes an unequal coupling between the alkyl protons and the two phosphorus nuclei, it is concluded that these compounds show a degenerate, however deceivingly simple, coupling: The spectra of symmetric diorgano diphosphines can be interpreted via the same mechanism. Calculations to substantiate these findings are reported.  相似文献   

2.
Syntheses of the title compounds, viz. N(CH2CH2O)3GeY ( 2 Y?Fluorenyl; 4 Y?PhC?C) by the reaction of X3GeY ( 1 Y?Fluorenyl, X?Br; 5 Y?PhC?C, X?Cl) with N(CH2CH2OSnR3)3 ( 3 R?Et; 6 R?Bu) are reported including the preparation of the new compound 1 . Identity and structures were established by elemental analyses, 1H and 13C NMR spectroscopy. 2 and 4 were characterized by mass spectrometry. Single crystal structures of 1 , 2 and 4 were determined by X-ray diffraction methods.  相似文献   

3.
Dithizone forms stable complexes with β-alkoxycarbonyl ethyl tin chlorides (the so called “Estertins” – a unique class of PVC stabilizer). Reduction of Lewis acidity of the resulting organotin chloride can improve the efficiency of a stabilizer and therefore the β-alkoxycarbonyl ethyl tin dithizonates are likely to show PVC stabilization property. A number of β-alkoxycarbonyl ethyl tin dithizonates of the types R2SnL2, R2SnLX, and RSnL2X where R = CH3OCOCH2CH2–, C4H9OCOCH2CH2–, and CH3OCOCH(CH3)CH2–; X = Cl, SCN and L = Dithizone (i. e. 1,5-diphenyl thiocarbazone) and one complex (CH3OCOCH2CH2)2SnL′Cl where L′ = Diphenylcarbazone have been prepared and characterized by elemental analysis, electronic, IR and PMR spectral data. Possible structural features of the isolated complexes have also been discussed. Preliminary evaluation of the complex (CH3OCOCH2CH2)2Sn(HDz)2 as a PVC stabilizer has also been reported.  相似文献   

4.
I.R.-spectroscopic Investigation on Halogenomethyl-, Benzyl-, and α-Halogenobenzyl-substituted Alkoxysilanes, Phenoxysilanes, and Disiloxanes Frequencies of Si? O-characteristic vibrations and the relative basicity of oxygen have been measured for Si? O compounds of the type X(CH3)2Si? OY (X = halogenomethyl, benzyl, α-halogenobenzyl; Y = alkyl, phenyl, Si(CH3)2X). With exception of the less Si? O-characteristic C? O? (Si)-stretching vibration of alkoxysilanes the observed data show a significant dependence from the inductive effect of substituents at Si. There are no informations on conjugative interactions between Si and β-standing halogeno or phenyl groups.  相似文献   

5.
Dinuclear Palladium(II), Platinum(II), and Iridium(III) Complexes of Bis[imidazol‐4‐yl]alkanes The reaction of bis(1,1′‐triphenylmethyl‐imidazol‐4‐yl) alkanes ((CH2)n bridged imidazoles L(CH2)nL, n = 3–6) with chloro bridged complexes [R3P(Cl)M(μ‐Cl)M(Cl)PR3] (M = Pd, Pt; R = Et, Pr, Bu) affords the dinuclear compounds [Cl2(R3P)M–L(CH2)nL–M(PR3)Cl2] 1 – 17 . The structures of [Cl2(Et3P)Pd–L(CH2)3L–Pd(PEt3)Cl2] ( 1 ), [Cl2(Bu3P)Pd–L(CH2)4L–Pd(PBu3)Cl2] ( 10 ), [Cl2(Et3P)Pd–L(CH2)5L–Pd(PEt3)Cl2] ( 3 ), [Cl2(Et3P)Pt–L(CH2)3L–Pt(PEt3)Cl2] ( 13 ) with trans Cl–M–Cl groups were determined by X‐ray diffraction. Similarly the complexes [Cl2(Cp*)Ir–L(CH2)nL–Ir(Cp*)Cl2] (n = 4–6) are obtained from [Cp*(Cl)Ir(μ‐Cl)2Ir(Cl)Cp*] and the methylene bridged bis(imidazoles).  相似文献   

6.
Bis(trimethylsilyl)hypophosphite und Alkoxycarbonylphosphonous Acid Bis(trimethylsilyl) esters as Building Blocks in Organophosphorus Chemistry The oxidation of pure bis(trimethylsilyl)hypophosphite ( BTH ) with chalcogenides forming (Me3SiO)2P(X)H (X = O, S, Se, Te) is described as well as its reactions with alkylhalides RX (X = Cl, Br, I) and Cl? C(O)OR (R = Me, Et, Bzl). By reaction with oxygen, sulfur, and selenium the alkoxycarbonylphosphonous acid bis(trimethylsilyl)esters form RO? C(O)? P(X)(OSiMe3)2 (X = O, S, Se) whereas with Cl? C(O)OR the bis(alkoxycarbonyl)-phosphinic acid trimethylsilylesters are obtained. After partial hydrolysis the resulting instable RO? C(O)? P(O)H(OSiMe3) gives RO? C(O)? P(O)(OSiMe3)? CH2? NH? A? COOR′ (A = CH2, CH2CH2, CHCH3, CH2CH2SH, CHCH(CH3)2,…) when allowed to react with hexahydro-s-triazines of the aminoacid esters. Reactions of the alkoxycarbonyl-P-silylesters with NaOR or NaOH result in the corresponding mono-, di-, or trisodium salts. With mineral acids decarboxylation occurs, but H? P(O)(OH)? CH2? NH? A? COOH can be obtained, too. The structure of the compounds described are discussed by their n.m.r. data.  相似文献   

7.
The neutral hexacoordinate silicon(IV) complex 6 (SiO2N4 skeleton) and the neutral pentacoordinate silicon(IV) complexes 7 – 11 (SiO2N2C skeletons) were synthesized from Si(NCO)4 and RSi(NCO)3 (R=Me, Ph), respectively. The compounds were structurally characterized by solid‐state NMR spectroscopy ( 6 – 11 ), solution NMR spectroscopy ( 6 and 10 ), and single‐crystal X‐ray diffraction ( 8 and 11 were studied as the solvates 8? CH3CN and 11? C5H12 ? 0.5 CH3CN, respectively). The silicon(IV) complexes 6 (octahedral Si‐coordination polyhedron) and 7 – 11 (trigonal‐bipyramidal Si‐coordination polyhedra) each contain two bidentate ligands derived from an α‐amino acid: (S)‐alanine, (S)‐phenylalanine, or (S)‐tert‐leucine. The deprotonated amino acids act as monoanionic ( 6 ) or as mono‐ and dianionic ligands ( 7 – 11 ). The experimental investigations were complemented by computational studies of the stereoisomers of 6 and 7 .  相似文献   

8.
Synthesis of “Inorganic” Pode-type Molecules. II The reaction of the amino compounds MeyB? NMe2 (B ? As, y ? 2; B ? Si, y ? 3) with 1, n-dioles results in the formation of the compounds HO(CH2)nOBMey. These compounds can be used as the arms of pode-type molecules MexA[? O(CH2)nOBMey]z with A ? Si, As. The influence of A, B, n, and z in the rearrangement of these molecules is examined. A second type of pode molecules can be prepared by the reaction of Me2As? R? OH (R ? CH2CH2, CH2CH2(OCH2CH2)2) with the amino compounds Mex(NMe2)z (A ? As, Si). These reactions result in the formation of molecules as MexA(ORAsMe2)z.  相似文献   

9.
Several nickel α-diimine compounds of the general formula (ArNC(R) C(R)NAr)NiX2 (Ar = 2,6-alkyl substituted Ph, R = H or CH3, X = Br or CH3) were tested in ethylene polymerization after activation with different co-catalysts, such as methylaluminoxane, Al(C2H5)2Cl or other aluminium alkyls, and ionizing reagents like B(C6F5)3, [CPh3][B(C6F5)4] or HBF4. The performances of the different catalytic systems were compared with reference to polymer productivity and structure. The degree of branching of the obtained polyethylenes was shown to depend not only on the ligand environment at the Ni centre but also on the type of co-catalyst.  相似文献   

10.
Phosphonium Salts with Hydrogen Dihalide Anions HCl2?, HBr2?, HI2?, or HBrCl? Phosphonium hydrogen dihalides [R3PR′][XHY] (X = Y = Cl, Br, I; X = Br, Y = Cl) resp. [R3PH]HBr2 are obtained as extremely hydrolyzable crystals by reaction of phosphonium halides or tertiary phosphanes with hydrogen halide. According to IR spectroscopic results the solid compounds mostly contain anions [XHX]? with symmetric hydrogen bonds. In solution 1H NMR measurements show a slight (X = Cl, Br) or considerable (X = I) dissociation according to HX2? ? X? + HX. On heating the solid compounds decompose with formation of hydrogen halide and [R3PR′]X or [R3PH]X. In this process the hydrogen bromidechlorides [R3PR′][BrHCl] exclusively eliminate HCl. NMR studies (1H und 31P) with solutions containing [R3PH]HBr2 (R = phenyl, 1-naphtyl) or HBr and Ph3P in varying molar ratios show that a fast proton exchange between the competing Lewis bases R3P and Br? exists.  相似文献   

11.
Rh‐containing metallacycles, [(TPA)RhIII2‐(C,N)‐CH2CH2(NR)2‐]Cl; TPA=N,N,N,N‐tris(2‐pyridylmethyl)amine have been accessed through treatment of the RhI ethylene complex, [(TPA)Rh(η2CH2CH2)]Cl ([ 1 ]Cl) with substituted diazenes. We show this methodology to be tolerant of electron‐deficient azo compounds including azo diesters (RCO2N?NCO2R; R=Et [ 3 ]Cl, R=iPr [ 4 ]Cl, R=tBu [ 5 ]Cl, and R=Bn [ 6 ]Cl) and a cyclic azo diamide: 4‐phenyl‐1,2,4‐triazole‐3,5‐dione (PTAD), [ 7 ]Cl. The latter complex features two ortho‐fused ring systems and constitutes the first 3‐rhoda‐1,2‐diazabicyclo[3.3.0]octane. Preliminary evidence suggests that these complexes result from N–N coordination followed by insertion of ethylene into a [Rh]?N bond. In terms of reactivity, [ 3 ]Cl and [ 4 ]Cl successfully undergo ring‐opening using p‐toluenesulfonic acid, affording the Rh chlorides, [(TPA)RhIII(Cl)(κ1‐(C)‐CH2CH2(NCO2R)(NHCO2R)]OTs; [ 13 ]OTs and [ 14 ]OTs. Deprotection of [ 5 ]Cl using trifluoroacetic acid was also found to give an ethyl substituted, end‐on coordinated diazene [(TPA)RhIII2‐(C,N)‐CH2CH2(NH)2‐]+ [ 16 ]Cl, a hitherto unreported motif. Treatment of [ 16 ]Cl with acetyl chloride resulted in the bisacetylated adduct [(TPA)RhIII2‐(C,N)‐CH2CH2(NAc)2‐]+, [ 17 ]Cl. Treatment of [ 1 ]Cl with AcN?NAc did not give the Rh?N insertion product, but instead the N,O‐chelated complex [(TPA)RhI ( κ2‐(O,N)‐CH3(CO)(NH)(N?C(CH3)(OCH?CH2))]Cl [ 23 ]Cl, presumably through insertion of ethylene into a [Rh]?O bond.  相似文献   

12.
New Methods for Synthesis of Organohalogenostibanes Organohalogenostibanes RSbX2 (R = CH3, C6H5; X = Cl, Br) and R2SbX (R = C6H5; X = Cl) are received in good yields by alkylation or arylation of the corresponding antimony halides with Pb(CH3)4, Sn(CH3)4, Sb(CH3)3, or Sb(C6H5)3. These methods are better than those, described in the literature for preparation of the compounds.  相似文献   

13.
On Organophosphorus Compounds. XV. Preparation and Reactions of Trimethylsilyl Esters of Phosphinic Acids Trimethylsilylesters of Phosphinic acids R2P(X)YSi(CH3)3 (R ? CH3, C2H5, C3H7, t?C4H9, C6H5; X, Y ? O, S) were prepared by 7 different methods as in some cases easily hydrolysable but thermally remarkably stable compounds. The properties and some reactions of these substances are reported, their structures confirmed by IR? as well as 1H- and 31P-NMR-spectroscopy. Dimethylsilylen-bis(phosphinic acid esters) were obtained according to \documentclass{article}\pagestyle{empty}\begin{document}$ 2{\rm R}_{2} {\rm P(\rm X)\rm ONH}_{4} + {\rm R}_{\rm 2} {\rm SiCl}_{2} \to 2{\rm E NH}_{4} {\rm Cl + R}_{2} {\rm P(X) - O - SiR}_{2} - {\rm O - P(X)R}_{2} ({\rm R = CH}_{3};{\rm X = O,S}) $\end{document}.  相似文献   

14.
DFT (B3LYP, M06‐2X) and MP2 methods are applied to the design of a wide series of the potentially 10‐C‐5 neutral compounds based on 6‐azabicyclotetradecanes: XC1(YCH2CH2CH2)3N 1 – 3 , XC1(YC6H4CH2)3N 4 – 6 , XC1[Y(tBuC6H3)CH2]3N 7 – 9 and carbatranophanes 10 – 25 (X=Me, F, Cl; Y=O, NH, CH2, SiH2; Z=O, CH2, (CH2)2, (CH2)3). Carbatranophanes 10 – 25 are characterized by a sterical compression of their axial 3c–4e XC1←N fragment with respect to that in the parent molecules 4 – 6 . A magnitude of the revealed effect depends on a valence surrounding of the central carbon atom C1, the size and the nature of the side chains (Z) that link the “π‐electron cap” with a tetradecane backbone. This circumstance allowed us to obtain 10‐C‐5 structures with the configuration of the bonds around the C1 atom, which corresponds to practically an ideal trigonal bipyramid. In these compounds, the values of the covalence ratio χ of approximately 0.6 for the coordination C1←N contacts with a covalent contribution (atoms in molecules (AIM) and natural bond orbital (NBO)) are record in magnitude. These values lie close to a low limit of the interval of the χSi←D change (0.6–0.9) being characteristic of the dative and ionic‐covalent (by nature) Si←D bond (D=N, O) in the known 10‐Si‐5 silicon compounds.  相似文献   

15.
ω-Haloalkyltin trihalides, X(CH2)nSnX3 (n ≧ 3; X = halogen) can readily be prepared in high yields by the direct reaction of stannous halides with α,ω-dihaloalkanes, catalysed by trialkylantimony compounds. The compounds are versatile starting materials for the synthesis of a variety of ω-functionallysubstituted organotin compounds R3-mXmSn(CH2)n Y (R = alkyl, phenyl; m = 0-3; X = Cl, Br, O; Y = Br, NMe2, NEt2, COOH, CHOHR, R3Sn). 1H-NMR spectral data for a series of such compounds are presented. The trends observed in the chemical shifts and the 119Sn—methyl proton coupling constants of Me3-m BrmSn(CH2)nBr (m = 0-3; n = 3-5) are discussed in terms of inductive effects. Intramolecular coordination between the ω-bromine atom and tin could not be demonstrated.  相似文献   

16.
The set of four triorganotin(IV) diesters of 4‐ketopimelic acid containing {2‐[(CH3)2NCH2]C6H4}‐ as a C,N‐chelating ligand was prepared. Their structures were studied by the help of IR, NMR and X‐ray crystallographic techniques in the case of {{2‐[(CH3)2NCH2]C6H4}SnPh2}2[(OOCCH2CH2)2C?]. All these compounds are monomeric both in solid state and solution with five‐coordinated tin atoms and medium strong intramolecular Sn? N connection. The antimycotical activity of these compound was studied and compared with the triorganotin(IV) derivatives of 4‐ketopimelic acid and antimycotical drugs in clinical use. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The reaction of the 2‐(trimethylsilyl)imidazolium triflate 9 with diarylboron halides (4‐R‐C6H4)2BX (R=H, X=Br; R=CH3, X=Cl; R=CF3, X=Cl) afforded the NHC‐stabilized borenium cations 10 a – c . Cyclic voltammetry revealed a linear correlation between the Hammett parameter σ p of the para substituent and the half‐wave potential. Chemical reduction with decamethylcobaltocene, [(C5Me5)2Co], furnished the corresponding radicals 11 a – c ; their characterization by EPR spectroscopy confirmed the paramagnetic character of 11 a – c , with large hyperfine coupling constants to the boron isotopes 11B and 10B, while delocalization of the unpaired electron into the NHC is negligible. DFT calculations of the percentage of spin density distribution between the carbene (NHC) and the boryl fragments (BR2) revealed for 11 a – c a spin density ratio (BR2/NHC) of ca. 9:1, which underlines their distinct boryl radical character. The molecular structure of the most stable species 11 c was established by X‐ray diffraction analysis.  相似文献   

18.
The 1,1‐ethylboration of alkyn‐1‐yl‐chloro(methyl)silanes, Me2Si(Cl)? C?C? R ( 1 ) and Me(H)Si(Cl)? C?C? R ( 2 ) [R = Bu ( 2a ), CH2NMe2 ( 2b )] requires harsh reaction conditions (up to 20 days in boiling triethylborane), and leads to alkenes in which the boryl and silyl groups occupy cis ((E)‐isomers: 3a , 3b , 5a , 5b ) or trans positions ((Z)‐isomers in smaller quantities: 4b and 6b ). The alkenes are destabilized in the presence of SiH(Cl) and CH2NMe2 units ( 5b , 6b ). NMR data indicate hyper‐coordinated silicon by intramolecular N? Si coordination in 3b and 5b , by which, at the same time, weak Si? Cl? B bridges are favoured. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Intramolecular Diels–Alder (IMDA) transition structures (TSs) and energies have been computed at the B3LYP/6‐31+G(d) and CBS‐QB3 levels of theory for a series of 1,3,8‐nonatrienes, H2C?CH? CH?CH? CH2? X? Z? CH?CH2 [? X? Z? =? CH2? CH2? ( 1 ); ? O? C(?O)? ( 2 ); ? CH2? C(?O)? ( 3 ); ? O? CH2? ( 4 ); ? NH? C(?O)? ( 5 ); ? S? C(?O)? ( 6 ); ? O? C(?S)? ( 7 ); ? NH? C(?S)? ( 8 ); ? S? C(?S)? ( 9 )]. For each system studied ( 1 – 9 ), cis‐ and trans‐TS isomers, corresponding, respectively, to endo‐ and exo‐positioning of the ? C? X? Z? tether with respect to the diene, have been located and their relative energies (ErelTS) employed to predict the cis/trans IMDA product ratio. Although the ErelTS values are modest (typically <3 kJ mol?1), they follow a clear and systematic trend. Specifically, as the electronegativity of the tether group X is reduced (X?O→NH or S), the IMDA cis stereoselectivity diminishes. The predicted stereochemical reaction preferences are explained in terms of two opposing effects operating in the cis‐TS, namely (1) unfavorable torsional (eclipsing) strain about the C4? C5 bond, that is caused by the ? C? X? C(?Y)? group’s strong tendency to maintain local planarity; and (2) attractive electrostatic and secondary orbital interactions between the endo‐(thio)carbonyl group, C?Y, and the diene. The former interaction predominates when X is weakly electronegative (X?N, S), while the latter is dominant when X is more strongly electronegative (X?O), or a methylene group (X?CH2) which increases tether flexibility. These predictions hold up to experimental scrutiny, with synthetic IMDA reactions of 1 , 2 , 3 , and 4 (published work) and 5 , 6 , and 8 (this work) delivering ratios close to those calculated. The reactions of thiolacrylate 5 and thioamide 8 represent the first examples of IMDA reactions with tethers of these types. Our results point to strategies for designing tethers, which lead to improved cis/trans‐selectivities in IMDAs that are normally only weakly selective. Experimental verification of the validity of this claim comes in the form of fumaramide 14 , which undergoes a more trans‐selective IMDA reaction than the corresponding ester tethered precursor 13 .  相似文献   

20.
Some new types of mononuclear derivatives, AlL(1–4)L(1–4)H ( 1a–1d ) of aluminium were synthesized by the reaction of Al(OPri)3 and LH2 [XC(NYOH)CHC(R)OH], X = CH3, Y = (CH2)2, R = CH3(L1H2); X = C6H5, Y = (CH2)2, R = CH3(L2H2); X = CH3, Y = (CH2)3, R = CH3(L3H2); X = C6H5, Y = (CH2)3, R = CH3(L4H2) in 1:2 molar ratio in refluxing benzene. Reactions of AlL(1–4)L(1–4)H with hexamethyldisilazane in 2:1 molar ratio yielded some new ligand bridged heterodinuclear derivatives AlL(1–4)L(1–4)SiMe3 ( 2a – 2d ). All these newly synthesized derivatives were characterized by elemental analysis and molecular weight measurements. Tentative structures were proposed on the basis of IR and NMR spectra (1H, 13C, 27 Al and 29Si) and FAB‐mass studies. Schiff base ligands and their mono‐ and heterodi‐nuclear derivatives with aluminium have been screened for fungicidal activities. These compounds showed significant antifungal activity against Aspergillus niger and A. flavus. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号