首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
When exposed to a lean hydrogen-oxygen flat flame, slabs of poly(methyl methacrylate) ignited to flaming combustion after a delay, the length of which depended on the gas temperature and the separation between the slab and the igniting flame. The delay obeyed an Arrhenius-type expression, giving an activation energy of 96 ± 8 kJ mol?1. By the end of the delay the surface of the sample was pitted if the delay was long and almost unchanged if the delay was short. The rates of flame development measured immediately after the ignition were proportional to the ignition delay, the proportionality constant varying with the separation between slab and flame. These rates decreased as temperature increased; the slope of the linear Arrhenius plots was independent of slab-flame separation. During the delay, carbon dioxide was formed within the boundry layer and a blue preignition glow was visible at its outer edge. These data were explained by a model in which ignition delay is governed by the induction period of gas-phase reactions in or near the boundry layer. Models in which delay is governed by the time taken to heat the polymer to a critical ignition temperature did not satisfactorily explain the data.  相似文献   

2.
The ignition of slabs of high-impact polystyrene by a lean hydrogen–oxygen flat flame was studied. The ignition delays and inital rates of flame development after ignition are reported as functions of gas temperature and the separation between flame and polymer surface. The delays follow an Arrhenius-type expression with an activation energy of 98 ± 18 kJ mol?1. The rates of flame development drop as the gas temperature increases. During long ignition delays the apparent heat transfer coefficient at the sample surface dropped from about 100 W m?2 K?1 to values close to that expected for a hot gas impinging at right angles on a cold surface. For short delays it was higher and more constant at about 100 W m?2 K?1. Although the surface temperature reached before ignition exceeded that required for nonoxidative pyrolysis, the polymer surface charred only when oxygen was present. It is concluded that both oxidative and nonoxidative pyrolysis contribute to the ignition of polystyrene.  相似文献   

3.
The responses of a polymer flame to changes of specimen diameter, ignition position, and stability of the burning surface were determined. These extrinsic flame parameters restricted the transport of oxygen from the environment to the burning surface. With increasing restriction the oxygen demand from the environment for self-sustained combustion increased from a minimum oxygen demand at maximum access of environmental oxygen to the burning surface. This increase in oxygen demand was measured and correlated with surface oxygen concentrations estimated from the diffusion data of Part I. The minimum oxygen demand was demonstrated as characteristic for a given polymer and intrinsic in its chemical structure. This minimum oxygen demand, termed intrinsic combustibility, has been correlated with a polymer's thermooxidative stability, measured by thermogravimetric analysis at specific conditions. An intrinsic combustibility scale for polymers is given. In contrast, polymer flammability, as commonly measured in air, is interpreted as a variable property that depends on the extent of the interaction between extrinsic parameters, which are set by the testing configuration, with intrinsic combustibility.  相似文献   

4.
大分子碳氢燃料的低温化学反应及两阶段点火特性会显著影响火焰的分区及燃烧情况。本文采用数值模拟的方法探究了正庚烷/空气预混混合气在RATS燃具上的湍流火焰传播,与试验结果具有一致性。模拟使用的是44种物质,112步的正庚烷简化动力学机理。使用Open FOAM的reacting Foam求解器建立了简化模拟流道及出口的三维模型,模拟了在大气环境下,初始反应温度450–700 K、入口速度6 m·s~(-1)与10 m·s~(-1)、焰前流动滞留时间100 ms及60 ms、当量比φ=0.6的正庚烷/空气混合气湍流火焰燃烧情况。结果发现,标准化湍流燃烧速度与混合气初始温度以及流动滞留时间有关。在低温点火阶段,正庚烷氧化程度受到初始温度与速度的影响,燃料分解并在预热区中产生大量中间物质如CH_2O,继而会影响湍流火焰燃烧速度。随着初始反应温度的升高,湍流燃烧火焰逐渐由化学反应冻结区过渡到低温点火区;温度超过一定数值后,燃料不再发生低温反应,此时燃烧位于高温点火区域。  相似文献   

5.
The laser-induced ignition of methane/air-mixtures at elevated pressures was investigated by an absorption spectroscopic technique. A room temperature continuous wave InGaAsSb/AlGaAsSb quantum well ridge diode laser was wavelength tuned around 2.55 mum by periodically modulating the injection current from 0 to 174 mA at a 5 kHz repetition rate. The laser heat sink temperature was fixed at 291 K. The infrared laser beam was sent through the pressurized combustion vessel perpendicularly to the igniting laser beam (Nd:YAG laser, 10 ns pulse duration, 20 mJ) at the position of the ignition spark. Fuel-rich to fuel-lean mixtures of methane/air (air equivalence ratio 0.89, 1.06, 1.42, 2.50) were investigated at initial pressures of up to 3 MPa. The initial temperature was 473 K, the volume of the combustion vessel 0.9x10(-3) m(3). The formation of water vapor in the vicinity of the laser spark was tracked by the diode laser. The time resolution of the measurements was 0.2 ms for a total continuous measurement time of up to 1 s. In this way, the laser-induced ignition and its accompanying effects could be investigated on a time scale spanning four orders of magnitude. Apart from the absorbance of water vapor which could be determined semi-quantitatively (due to the effects of severe pressure broadening at high pressures and the ignorance of the exact temperature distribution after ignition), the emissions from the flame (broadband, 1-10 mum) and a gas inhomogeneity index were recorded. The gas inhomogeneity index was obtained by extracting a frequency variable from the time-dependent fluctuations of the transmitted laser intensities and calculating its derivation. The absorbance of water vapor, the emissions from the flame and the gas inhomogeneity index were found to be a powerful tool to characterize laser-induced ignition. Major implications of in situ species concentration measurements at high pressures for the design and development of high-load combustors are presented.  相似文献   

6.
The transport of oxygen by diffusion from the environment into a gas stream was investigated as a model for the analogous process in a diffusion flame. The amount transported at steady-state conditions depended on the flow rate, diameter, and spatial orientation of the gas stream. A change of the same extrinsic parameters in a diffusion flame caused changes of burner surface temperature, maximum flame temperature, and flame height. These responses were correlated and yielded an overall activation energy of the rate-controlling reaction step in the combustion process equal to 49 kcal/mole. This value was the same for several types of diffusion flames examined and appeared to be associated with the CO/CO2 conversion process at the high-temperature flame boundary. Flame quenching was demonstrated to occur at a minimum fuel flow rate and minimum environmental oxygen concentration which were characteristic for a given fuel. Quenching conditions were related to the diffusion rate of oxygen into the product effluent stream. Quenching of a polymer flame by depletion of environmental oxygen was governed by the same processes. The effect of extrinsic parameters on polymer flames is discussed in Part II.  相似文献   

7.
The spatial propagation of the chain ignition of propane-air and pentane-air mixtures with oxygen at a pressure of 1 atm and T = 600–800 K is studied. It is established that the features of the spatial propagation of chain ignition process are determined by the conditions of the reactor’s surface. It is shown that the site (or sites) of ignition are located on the surface of the reaction vessel; the flame front propagates from the site into the volume at a normal speed corresponding to the reactor temperature and the composition of the combustible mixture.  相似文献   

8.
Experimental conditions have been defined for the steady-state combustion of vertically positioned polymer rods burning at the top surface. Temperature and composition profiles through solid and gas phases of the system, polymer consumption rate, and flame height were measured, and the response of these parameters to changes of the oxygen concentration in the environment were determined. Measurements showed that unreacted oxygen diffused from the environment to the burning surface and was absorbed into the polymer, forming a well defined oxygen-rich layer. Concentration of chemically bound oxygen at the surface of this layer were high, e.g., with polypropylene ca. 26 wt-%, and identical with the stoichiometry of the gases leaving the surface and serving as fuel for the flame. The composition of the gas phase at the surface indicated the conversion of 11.4% of the hydrocarbon fuel to CO, CO2, and H2O. An energy balance for the system confirmed that fuel production in this surface layer takes place via simultaneous oxidative and pyrolytic degradation of the polymer, with exothermic processes supplying the energy for endothermic processes. Conductive and radiative contributions from the gas phase were found to play a minor role in maintaining fuel formation. The rate of degradation of a polymer to fuel, normalized to the area of the burning surface, was found to be independent of polymer supply rate and to increase with the oxygen concentration in the environment. The degradation process was successfully modeled in TGA experiments at temperatures and oxygen concentrations representative of the burning surface. The existence of an oxidative surface layer was confirmed and the TGA degradation rate related to the surface-to-volume ratio of the polymer sample. Compositional analysis of a methane diffusion flame of a geometry identical to that of the polymer flame, revealed the presence of unreacted oxygen throughout the preheating zone and at the surface of the burner. Conversion of fuel to final combustion products at the surface was 6.3%. Temperature and composition changes as a function of oxygen concentration in the environment were determined and compared with the polymer diffusion flame. It was concluded that a polymer flame, because of its autogenerative fuel production, possesses only one degree of freedom, viz., the oxygen concentration in the environment, in contrast to the conventionally fueled diffusion flame for which fuel supply rate is an additional independent parameter. Due to this single degree of freedom, the sensitivity of the polymer flame to environmental influences is increased. Effects caused by these extrinsic factors will be the subject of a separate report.  相似文献   

9.
The lactose/KClO3 is a widely used pyrotechnic mixture to vaporize organic materials, such as smoke dyes. However, because of low ignition temperature of this mixture, serious precaution should be taken into account to prevent its accidental self-ignition. In order to find a safe and efficient alternative of this conventional mixture, KClO3 has been replaced by common oxidizing agents including KMnO4, KNO3, KClO4, Ba(NO3)2, PbO2 and NH4ClO4. TG and DTA analysis have been used to obtain thermal characteristic of the mixtures. Based on ignition temperature of the pyrotechnic mixtures we can divide them into four categories as follows: (1) the mixture igniting at low temperature, i.e., at about 200 °C. (2) Moderate temperature igniting mixture, in which ignition occurs at 300–400 °C. (3) High temperature igniting mixture with ignition temperature higher than 400 °C .(4) Not igniting mixtures. Also, the apparent activation energy (E), ΔG #, ΔH #, ΔS # and critical ignition temperature (T b ) of the ignition processes of low and moderate temperature igniting mixtures were obtained from the DSC experiments. Finally, among the investigated mixtures, lactose/KNO3 can be considered as a safe and efficient pyrotechnic composition for vaporization of organic materials, such as smoke dyes, due to its moderate safe ignition temperature.  相似文献   

10.
The requirements for improving the efficiency of internal combustion engines and reducing emissions have promoted the development of new combustion technologies under extreme operating conditions (e.g., lean combustion), and the ignition and combustion characteristics of fuels are increasingly becoming important. A chemical kinetic reduced mechanism consisting of 115 species and 414 elementary reactions is developed for the prediction of ignition and combustion behaviors of gasoline surrogate fuels composed of five components, namely, isooctane, n-heptane, toluene, diisobutylene, and cyclohexane (CHX). The CHX sub-mechanism is obtained by simplifying the JetSurF2.0 mechanism using direct relationship graph error propagating, rate of production analysis, and temperature sensitivity analysis and CHX is mainly consumed through ring-opening reactions, continuous dehydrogenation, and oxygenation reactions. In addition, kinetic parameter corrections were made for key reactions R14 and R391 based on the accuracy of the ignition delay time and laminar flame velocity predictions. Under a wide range of conditions, the mechanism’s ignition delay time, laminar flame speed, and the experimental and calculated results of multi-component gasoline surrogate fuel and real gasoline are compared. The proposed mechanism can accurately reproduce the combustion and oxidation of each component of the gasoline-surrogate fuel mixture and real gasoline.  相似文献   

11.
The regularities of thermal degradation of Al(OH)3 powders and the compositions of polydimethylsiloxane and fire retardant with different size of particles (from 2 to 45m) were studed by the methods of the thermal analysis (TA), mass-spectrometry (MS) and the high temperature pyrolysis. It was shown that the size of flame retardant particles influences the physico-mechanical characteristics and combustion of polymeric compositions on the base of polydimethylsiloxane. The filling of the polymer with fine flame retardants improves the tensile properties of vulcanizates but the flame retardance is markedly decreased. The time of free combustion and the length of the burnt out parts are increased, the oxygen index and time of ignition delay are decreased while the flame temperature near the surface of the burning sample is increased.
Zusammenfassung Mittels Thermoanalyse, Massenspektrometrie und Pyrolyse bei hohen Temperaturen wurde die thermische Zersetzung von Al(OH)3-Pulvern und die Mischungen aus Polydimethylsiloxan und feuerhemmenden Mitteln mit unterschiedlicher Korngröße (2–45 m) untersucht. Man fand, daß die Partikelgröße des feuerhemmenden Mittels sowohl die physikalisch-mechanischen Eigenschaften als auch das Brennverhalten der Polymermischungen auf Polydimethylsiloxanbasis beeinflußt. Das Strecken des Polymers mit feingemahlenem flammenhemmenden Mittel verbessert zwar die Zugeigenschaften der Vulkanisate, die Flammenhemmung wird aber eindeutig vermindert. Die Zeit für den freien Brennvorgang und die Größe der verbrannten Teile wird erhöht, der Sauerstoffindex und der Zündverzug sinken, während die Flammentemperatur nahe der Oberfläche der Brennprobe ansteigt.
  相似文献   

12.
The phosphorus-containing acrylate monomer, 2-acryloyloxyethyl diethyl phosphate (ADEP), was synthesized and applied to cotton fabric by using the admicellar polymerization technique. A cationic surfactant (cetylpyridinium chloride, CPC) was used as the surfactant for admicellar polymerization. Results from FTIR-ATR and SEM showed that PADEP polymer film was successfully formed on the cotton fabric surface. TGA and DTG analyses showed that the phosphorus-containing PADEP lowered the decomposition temperature of the treated fabric resulting in a higher char yield than in the case of untreated cotton. The flammability tests showed that PADEP-coated cotton with the phosphorus content 4.18 mg/g cotton was self-extinguishing, with the flame extinguishing right after the removal of the ignition source leaving a small area of char formation.  相似文献   

13.
甲基肼/四氧化二氮反应化学动力学模型构建及分析   总被引:1,自引:0,他引:1  
甲基肼(MMH)和四氧化二氮(NTO)是常用的液体火箭发动机推进剂,但目前对其反应机理的研究还十分有限.本文首先构建了一个包含23种组分和20个基元反应的MMH/NTO反应动力学模型;对MMH/NTO自燃着火过程进行的验证计算表明,该机理能够合理地描述MMH/NTO的自燃温升过程,准确预测反应物系统的着火延迟时间及平衡温度,并能合理地反映MMH/NTO反应物系统着火延迟时间对反应初始压力以及氧燃比的依赖关系;通过灵敏度分析方法指出了影响MMH/NTO着火过程的关键反应.模拟分析了在不同压力和氧燃比条件下MMH/NTO系统的自燃温升过程,结果表明,随着压力的升高,系统着火延迟时间变短,平衡温度升高;在一定范围内增大氧燃比,着火延迟时间变长,平衡温度先升高后减小.  相似文献   

14.
Results are surveyed on two branched-chain processes near the first ignition limit: the combustion of hydrogen and phosphorus. The causes of discrepancies between theory and experiment are considered: detailed heterogeneous factors that affect the burning rates. An explanation is given for the unusual (double) first ignition limit occurring under certain conditions when a low-density flame interacts with a surface having a complicated composition. A quantitative mechanism has been tested for such a flame for phosphorus in oxygen, which incorporates the main heterogeneous processes that influence the combustion. The origins of superdilute flames in oxygen-hydrogen mixtures have been elucidated.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 6, pp. 1273–1296, June, 1991.  相似文献   

15.
正十一烷/空气在宽温度范围下着火延迟的激波管研究   总被引:2,自引:0,他引:2  
在加热激波管上测量了气相正十一烷/空气混合物的着火延迟时间,着火温度为宽温度范围731-1399 K,着火压力在2.02 × 105和10.10 × 105 Pa附近,化学计量比分别为0.5、1.0和2.0。通过监测管侧壁观测点处的反射激波压力和OH*发射光测出着火延迟时间。实验结果显示:在910 K以上,着火延迟时间随着火温度的降低而变长,从910到780 K,着火延迟时间随着火温度的降低而变短(显示出了负温度系数效应),在780 K以下,着火延迟时间随着火温度的降低再次变长。在所研究的压力下,着火压力的增加使着火时间变短。化学计量比对着火延迟的影响在着火压力为2.02 × 105和10.10 × 105 Pa时是不同的,与在高温区相比,着火延迟在低温区对化学计量比非常敏感。在整个温度范围内,当前实验结果和LLNL(LawrenceLivermore National Laboratory)机理的预测值表现出了很好的一致性。现在的正十一烷/空气的着火数据和先前实验测量的正庚烷/空气、正癸烷/空气和正十二烷/空气的着火延迟时间相比较显示了着火延迟时间随着直链烷碳原子数的增加而减小。敏感度分析显示,高、低温条件下影响正十一烷着火延迟过程的反应是显著不同的。在高温条件下起最大促进作用的反应是H + O2=O+OH,然而在低温条件下,起最大促进作用的反应是过氧十一烷基(C11H23O2)的异构化反应。本文研究首次提供了正十一烷/空气的激波管着火延迟时间。  相似文献   

16.
JP-10 (exo-tetrahydrodicyclopentadiene, C10H16) ignition delay times were measured in a preheated shock tube. The vapor pressures of the JP-10 were measured directly by using a high-precision vacuum gauge, to remedy the difficulty in determining the gaseous concentrations of heavy hydrocarbon fuel arising from the adsorption on the wall in shock tube experiments. The whole variation of pressure and emission of the OH or CH radicals were observed in the ignition process by a pressure transducer and a photomultiplier with a monochromator. The emission of the OH or CH radicals was used to identify the time to ignition. Experiments were performed over the pressure range of 151-556 kPa, temperature range of 1000-2100 K, fuel concentrations of 0.1%-0.55% mole fraction, and stoichiometric ratios of 0.25, 0.5, 1.0 and 2.0. The experimental results show that for the lower and higher temperature ranges, there are different dependency relationships of the ignition time on the temperature and the concentrations of JP-10 and oxygen.  相似文献   

17.
In this study, 75% and 96% argon diluent conditions were selected to determine the ignition delay time of stoichiometric mixture of C2H4/O2/Ar within a range of pressures (1.3-3.0 atm) and temperatures (1092-1743 K). Results showed a logarithmic linear relationship of the ignition delay time with the reciprocal of temperatures. Under both two diluent conditions, ignition delay time decreased with increased temperature. By multiple linear regression analysis, the ignition delay correlation was deduced. According to this correlation, the calculated ignition delay time in 96% diluent was found to be nearly five times that in 75% diluent. To explain this discrepancy, the hard-sphere collision theory was adopted, and the collision numbers of ethylene to oxygen were calculated. The total collision numbers of ethylene to oxygen were 5.99×1030 s-1cm-3 in 75% diluent and 1.53×1029 s-1cm-3 in 96% diluent (about 40 times that in 75% diluent). According to the discrepancy between ignition delay time and collision numbers, viz. 5 times corresponds to 40 times, the steric factor can be estimated.  相似文献   

18.
聚乙烯薄膜等离子体接枝甲基丙烯酸及阻燃性能的研究   总被引:4,自引:0,他引:4  
以聚乙烯为基础,通过等离子体接枝方法接枝甲基丙烯酸.研究了接枝反应条件对接枝率的影响,并对接枝样品的阻燃性能进行了表征.接枝后样品的点燃时间明显延长,极限氧指数明显提高,成炭量明显增加,说明接枝后的侧基(-COOH,-COO-Na+和-COO-K+)在热降解过程中不仅自身参与成炭,而且大大促进了基体聚合物的成炭过程.  相似文献   

19.
Secondary multiple cool flame appearing under certain conditions during thermooxidation of polypropylene was interpreted on the basis of oxidation of the polymer surface being influenced by changes in the direction of the temperature gradient. The average period of the oscillation process, directly proportional to the amplitude of the first oscillation, expresses the effect on the oscillation process of all important factors such as the oxygen concentration, rate of delivery of volatile oxidation products and temperature of a cool flame in the gas phase.  相似文献   

20.
由于详细化学反应机理在模拟燃烧室燃烧时,计算量极大,很难被广泛运用。为了满足工程设计要求,采用替代燃料的简化机理进行计算不失为一种行之有效的方法。本文基于误差传播的直接关系图法和敏感性分析法对正十二烷180组分1962步高温机理(温度大于1100 K)进行简化,获得40组分234步化学反应机理。在温度为1100–1650 K,压力为0.1–4 MPa条件下,采用简化机理及详细机理对不同当量比、压力下着火延迟时间进行模拟,模拟结果与实验数据吻合得较好。通过对不同压力及温度下火焰传播速度进行模拟,验证了简化机理能够正确地反映正十二烷的燃烧特性。利用C_(12)H_(26)/OH/H_2O/CO_2等重要组分随时间变化的数据,验证了简化机理能够准确描述燃烧过程反应物消耗、基团变化、生成物产生的过程,并表明该机理具有较高的模拟精度。利用该简化机理对本生灯进行数值分析,结果表明该机理能够准确地反映火焰区温度和组分浓度的变化。紧凑的正十二烷高温简化机理不仅能够正确体现其物理化学特性,而且能够用于三维数值模拟,具有较高的工程运用价值和应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号