首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The low solubility of pterins can drastically be improved by N2‐acylation or formation of the N2‐[(dimethylamino)methylene] derivatives. Both types of compounds can be alkylated under Mitsunobu conditions to form from N2‐acylpterins (see 2 and 3 ) and their derivatives (see 5, 6, 8, 9, 11, 13, 15 , and 17 ) selectively the O4‐alkyl derivatives 22 – 31 , whereas the electron‐donating [(dimethylamino)methyleneamino function in 46 – 51 gives, in a selective reaction, the N(3)‐substitution (→ 52 – 61 ). N2,N2‐Dimethylpterins and 18 and 19 and N2‐methylpterins 20 and 21 direct alkylation also to the O4‐position (→ 32 – 35, 38 and 39 ). Deacylation can be achieved under very mild conditions by solvolysis with MeOH ( 22 → 40, 26 → 41 ), and displacement of the O4‐[2‐(4‐nitrophenyl)ethyl] group proceeds with ammonia at room temperature to the corresponding pteridin‐2,4‐diamines 42 – 45 . Cleavage of the N2‐[(dimethylamino)methylene] group works well with ammonia (→ 62 – 67 ). The advantage of applying the 2‐(4‐nitrophenyl)ethyl (npe) group as blocking group is seen in its selective removal by 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) under aprotic conditions without harming the other substituents.  相似文献   

2.
Synthesis of N-Methyl- and N,N-Dimethylmerucathine and of N-Methyl- and N,N--Dimethylpseudomerucathine Starting from L -Alanine Starting form L -alanine, N-methylmerucathine (= (3R,4S)-4-(methylamino)1-phenyl-1-penten-3-ol; (3R,4S,)- 6 ), N,N-dimethylmerucathine (= (3R,4S)-4-(dimethylamino)-1-phenyl-1-penten-3-ol; (3R,4S)- 9 ), N-methylpseudomerucathine (= (3S,4S)-4-(methylamino)-1-phenyl-1-penten-3-01; (3S,4S)-6), and N,N-dimethylpseudomerucathine (= (3S,4S)-4-(dimethylamino)-1-phenyl-1-penten-3-ol; (3S,4S)- 9 ) were synthesized. The four compounds were analyzed by HPLC and compared with a natural khat extract.  相似文献   

3.
Four compounds derived from 2‐aminothiazole and 2‐amino‐2‐thiazoline were prepared by coupling the respective bases with the acid chlorides of either 3‐ or 4‐(N,N‐dimethylamino)benzoic acid. Products were identified using infrared spectroscopy, 1H NMR spectroscopy and electrospray mass spectroscopy and in two cases by single‐crystal X‐ray diffraction. Of the four, N‐(thiazol‐2‐yl)‐3‐(N,N‐dimethylamino)‐benzamide (1), N‐(thiazolin‐2‐yl)‐4‐(N,N‐dimethylamino)benzamide (2), N‐(thiazolin‐2‐yl)‐3‐(N,N‐dimethylamino) benzamide (3) and N‐(thiazolin‐2‐yl)‐4‐(N,N‐dimethylamino)benzamide (4), the hydrochloride salts of compounds 3 and 4 showed anti‐inflammatory activity across a concentration range of 10?2?5 × 10?4 M while 3 (at a concentration of 10?5 M) was found to have no adverse effect on myocardial function. The X‐ray crystal structure of 2 and the 1:1 adduct structure of 3 with 3‐(N,N‐dimethylamino)benzoic acid are reported.  相似文献   

4.
The structure of [(dimethylamino)methylene]bis[phosphonic acid] dihydrate (C3H11NO6P2⋅2 H2O; 1 ) was solved ab initio from synchrotron powder X-ray diffraction data. The structure determination was based on direct methods combined with difference Fourier techniques, and the refinement was carried out using the Rietveld method. Using this high-quality diffraction pattern, it was possible to index a second phase which corresponds to the structure of the known [(dimethylamino)methylene]bis[phosphonic acid] monohydrate ( 2 ). [(Dimethylamino)methylene]bis[phosphonic acid] dihydrate ( 1 ) is monoclinic, space group P21/c, Z=4, with a=10.6644(1), b=9.1599(1), c=10.5213(1) Å, and β=98.353(1)°. The structure analysis indicates two non-equivalent P-atoms in the molecule of 1 which are also observed in the corresponding monohydrate 2 and unhydrated form 3 . All three compounds exhibit extended H-bonding networks which result in remarkably different 31P-NMR spectra. The [(dimethylamino)methylene]bis[phosphonic acids] 1 – 3 crystallize in the betaine-type structure which, therefore, contains two nonequivalent P-atoms. The −P(=O)(OH)2 and −P(=O)(OH)O groups of 1 – 3 are involved in a number of strong H-bonds which can be characterized by the different 31P-NMR chemical shifts of the two P-atoms of 1 – 3 .  相似文献   

5.
Seven new steroidal alkaloids, 2‐hydroxysalignarine‐E (=(2′E,20S)‐20‐(dimethylamino)‐2β‐hydroxy‐3β‐(tigloylamino)pregn‐4‐ene; 1 ), 5,6‐dihydrosarconidine (=(20S)‐20‐(dimethylamino)‐3β‐(methylamino)‐5α‐pregn‐16‐ene; 2 ), salignamine (=(20S)‐20‐(methylamino)‐3β‐methoxypregna‐5,16‐diene; 3 ), 2‐hydroxysalignamine (=(20S)‐20‐(dimethylamino)‐2β‐hydroxy‐3β‐methoxypregna‐5,16‐diene; 4 ), salignarine‐F (=(2′E, 20S)‐20‐(dimethylamino)‐4β‐hydroxy‐3β‐(tigloylamino)pregn‐5‐ene; 5 ), salonine‐C (=(2′E,20S)‐20‐(dimethylamino)‐3β‐(tigloylamino)pregna‐4,14‐diene; 6 ), and N‐[formyl(methyl)amino]salonine‐B (=(20S)‐20‐[formyl(methyl)amino]‐3β‐methoxypregna‐5,16‐diene; 7 ) have been isolated from the MeOH extract of Sarcococca saligna, along with the six known alkaloids dictyophlebine ( 8 ), epipachysamine‐D ( 9 ), saracosine ( 10 ), iso‐N‐formylchonemorphine ( 11 ), sarcodinine ( 12 ), and alkaloid‐C ( 13 ). The structures of 1 – 7 were deduced from spectral data. Compounds 1 – 13 demonstrated significant activity against acetyl‐ and butyrylcholinesterase.  相似文献   

6.
Lijuan Lu  Chaoguo Yan 《中国化学》2015,33(10):1178-1188
The base mediated cycloaddition reactions of 4‐dimethylamino‐1‐phenacylpyridinium bromides with two molecular 3‐phenacylideneoxindoles in methylene dichloride afforded functionalized dispirocyclopentyl‐3,3′‐bisoxindoles in good yields and with high diastereoselectivity. The similar cycloaddition reactions of 1‐(N,N‐dialkylcarbamoylmethyl) and 1‐cyanomethyl 4‐dimethylamino‐pyridinium bromide in refluxing ethanol in the presence of triethylamine also resulted in dispirocyclopentyl‐3,3′‐bisoxindoles with high diastereoselectivity. The stereochemistry of dispirocyclopentyl‐3,3′‐bisoxindoles was elucidated on the basis of 1H NMR data and single crystal structures.  相似文献   

7.
The free energy of activation for rotation about the exocyclic C? N bond of the dimethylamino group of some 6-substituted 2-amino-4-(N,N-dimethylamino)pyrmidines has been determined using 1H NMR line shape analysis. The results are discussed in terms of the relative electron-withdrawing and electron-releasing effects of the substituents.  相似文献   

8.
The dipole moments of twelve 2‐N‐substituted amino‐5‐nitro‐4‐methylpyridines ( I‐XII ) and three 2‐N‐substituted amino‐3‐nitro‐4‐methylpyridines ( XIII‐XV ) were determined in benzene. The polar aspects of intramolecular charge‐transfer and intramolecular hydrogen bonding were discussed. The interaction dipole moments, μint, were calculated for 2‐N‐alkyl(or aryl)amino‐5‐nitro‐4‐methylpyridines. Increased alkylation of amino nitrogen brought about an intensified push‐pull interaction between the amino and nitro groups. The solvent effects on the dipole moments of 2‐N‐methylamino‐5‐nitro‐4‐methyl‐( I ), 2‐N,N‐dimethylamino‐5‐nitro‐4‐methyl‐ ( II ) and 2‐N‐methylamino‐3‐nitro‐4‐methylpyridines ( XIII ) were different. Specific hydrogen bond solute‐solvent interactions increased the charge‐transfer effect in I , but it did not disrupt the intramolecular hydrogen bond in XIII.  相似文献   

9.
Two different tautomeric forms of a new Schiff base, C17H19N3O2·C17H19N3O2, are present in the crystal in a 1:1 ratio, namely the enol–imine form 4‐(1‐{[4‐(dimethylamino)benzylidene]hydrazono}ethyl)benzene‐1,3‐diol and the keto–amine form 6‐[(E)‐1‐{[4‐(dimethylamino)benzylidene]hydrazino}ethylidene]‐3‐hydroxycyclohexa‐2,4‐dien‐1‐one. The tautomers are formed by proton transfer between the hydroxy O atom and the imine N atom and are hydrogen bonded to each other to form a one‐dimensional zigzag chain along the crystallographic b axis via intermolecular hydrogen bonds.  相似文献   

10.
The synthesis and crystal structure (at 100 K) of the title compound, Cs[Fe(C11H13N3O2S2)2]·CH3OH, is reported. The asymmetric unit consists of an octahedral [FeIII(L)2] fragment, where L2− is 3‐ethoxysalicylaldehyde 4‐methylthiosemicarbazonate(2−) {systematic name: [2‐(3‐ethoxy‐2‐oxidobenzylidene)hydrazin‐1‐ylidene](methylamino)methanethiolate}, a caesium cation and a methanol solvent molecule. Each L2− ligand binds through the thiolate S, the imine N and the phenolate O atoms as donors, resulting in an FeIIIS2N2O2 chromophore. The O,N,S‐coordinating ligands are orientated in two perpendicular planes, with the O and S atoms in cis positions and the N atoms in trans positions. The FeIII cation is in the low‐spin state at 100 K.  相似文献   

11.
A group of 2‐(N,N‐diethylamino)‐4‐aminoquinazoline derivatives have been synthesized in the reaction of N1,N1‐diethyl‐N2‐arylchlorocarboxyamidines with cyanamide in the presence of T1Cl4 as a catalyst. Such quinazolines decompose into the corresponding quinazolones in dilute aqueous HC1 solutions at higher temperature. Hydrolysis rates of 2‐(N,N‐diethylamino)‐4‐aminoquinazoline and 2‐(N,N‐diethylamino)‐4‐(N,N‐dimethylamino)‐quinazoline have been determined to observe the influence of substituents at the 4‐amino group upon the hydrolysis. pKa values have been also determined for these compounds and analyzed in conjunction with the Hammett σ constants.  相似文献   

12.
The relative reactivity toward protonation and methylation of the two nitrogen atoms in N,N-dimethylaminopyridines has been examined by 1H NMR. The ring position of the dimethylamino group has no influence on protonation, which occurs in all the derivatives at the heterocyclic nitrogen. The N-methylation reaction does not follow a homogeneous behaviour, occurring at the exocyclic nitrogen in the 2-substituted dimethylamino derivative. The electronic characteristics of the molecules, determined by MO calculations at a semi-empirical level, indicate that both protonation and methylation should occur at the heterocyclic nitrogen; the calculated relative stabilites, however, of the N-protonated and N-methylated forms are in full agreement with the experimental results, and it appears that the anomalous behaviour of 2-dimethylaminopyridine in the N-methylation reaction is caused by steric factors.  相似文献   

13.
Four crystal structures of 3‐cyano‐6‐hydroxy‐4‐methyl‐2‐pyridone (CMP), viz. the dimethyl sulfoxide monosolvate, C7H6N2O2·C2H6OS, (1), the N,N‐dimethylacetamide monosolvate, C7H6N2O2·C4H9NO, (2), a cocrystal with 2‐amino‐4‐dimethylamino‐6‐methylpyrimidine (as the salt 2‐amino‐4‐dimethylamino‐6‐methylpyrimidin‐1‐ium 5‐cyano‐4‐methyl‐6‐oxo‐1,6‐dihydropyridin‐2‐olate), C7H13N4+·C7H5N2O2, (3), and a cocrystal with N,N‐dimethylacetamide and 4,6‐diamino‐2‐dimethylamino‐1,3,5‐triazine [as the solvated salt 2,6‐diamino‐4‐dimethylamino‐1,3,5‐triazin‐1‐ium 5‐cyano‐4‐methyl‐6‐oxo‐1,6‐dihydropyridin‐2‐olate–N,N‐dimethylacetamide (1/1)], C5H11N6+·C7H5N2O2·C4H9NO, (4), are reported. Solvates (1) and (2) both contain the hydroxy group in a para position with respect to the cyano group of CMP, acting as a hydrogen‐bond donor and leading to rather similar packing motifs. In cocrystals (3) and (4), hydrolysis of the solvent molecules occurs and an in situ nucleophilic aromatic substitution of a Cl atom with a dimethylamino group has taken place. Within all four structures, an R22(8) N—H...O hydrogen‐bonding pattern is observed, connecting the CMP molecules, but the pattern differs depending on which O atom participates in the motif, either the ortho or para O atom with respect to the cyano group. Solvents and coformers are attached to these arrangements via single‐point O—H...O interactions in (1) and (2) or by additional R44(16) hydrogen‐bonding patterns in (3) and (4). Since the in situ nucleophilic aromatic substitution of the coformers occurs, the possible Watson–Crick C–G base‐pair‐like arrangement is inhibited, yet the cyano group of the CMP molecules participates in hydrogen bonds with their coformers, influencing the crystal packing to form chains.  相似文献   

14.
The EI induced fragmentation pathways of 4,5-bis(dimethylamino)fluorene, 4-(d6-dimethylamino)-5-(dimethylamino)fluorene, 4,5-bis(d6-dimethylamino)fluorene, 4-(dimethylamino)-5-methylaminofluorene, 4,5-bis-(methylamino)fluorene, 4-amino-5-methylaminofluorene, 1,8-bis(dimethylamino)naphthalene, 1,8-bis(d6-dimethyl-amino)-naphthalene and 1,8-bis(dimethylamino)-2,7-dimethoxynaphthalene were investigated. A mechanism is pro-posed for the surprising elimination of CH3? NH2 from the molecular ion, followed by loss of C2H5·, C2H4 and CH3CN and for the accompanying cyclizations to stable heterocyclic ions: prior to fragmentation the molecular radical ion rearranges to new, distonic radical ions by reciprocal H and CH3 transfers between the adjacent dimethylamino groups. Each of these new, isomeric molecular ions decomposes subsequently in a characteristic way.  相似文献   

15.
The reactions of ten metastable immonium ions of general structure R1R2C?NH+C4H9 (R1 = H, R2 = CH3, C2H5; R1 = R2 = CH3) are reported and discussed. Elimination of C4H8 is usually the dominant fragmentation pathway. This process gives rise to a Gaussian metastable peak; it is interpreted in terms of a mechanism involving ion-neutral complexes containing incipient butyl) cations. Metastable immonium ions ontaining an isobutyl group are unique in undergoing a minor amount of imine (R1R2C?NH) loss. This decomposition route, which also produces a Gaussian metastable peak, decreases in importance as the basicity of the imine increases. The correlation between imine loss and the presence of an isobutyl group is rationalized by the rearrangement of the appropriate ion-neutral complexes in which there are isobutyl cations to the isomeric complexes containing the thermodynamically more stable tert-butyl cations. A sizeable amount of a third reaction, expulsion of C3H6, is observed for metastable n-C4H9 +NH?CR1R2 ions; in contrast to C4H8 and R1R2C?NH loss, C3H6 elimination occurs with a large kinetic energy release (40–48 kJ mol?1) and is evidenced by a dish-topped metastable peak. This process is explained using a two-step mechanism involving a 1,5-hydride shift, followed by cleavage of the resultant secondary open-chain cations, CH3CH+ CH2CH2NHCHR1R2.  相似文献   

16.
A new cadmium–thiocyanate complex, namely catena‐poly[1‐carboxymethyl‐4‐(dimethylamino)pyridinium [cadmium(II)‐tri‐μ‐thiocyanato‐κ4N:S2S:N] [[[4‐(dimethylamino)pyridinium‐1‐acetate‐κ2O,O′]cadmium(II)]‐di‐μ‐thiocyanato‐κ2N:S2S:N]], {(C9H13N2O2)[Cd(NCS)3][Cd(NCS)2(C9H12N2O2)]}n, was synthesized by the reaction of 4‐(dimethylamino)pyridinium‐1‐acetate, cadmium nitrate tetrahydrate and potassium thiocyanide in aqueous solution. In the crystal structure, two types of CdII atoms are observed in distorted octahedral coordination environments. One type of CdII atom is coordinated by two O atoms from the carboxylate group of the 4‐(dimethylamino)pyridinium‐1‐acetate ligand and by two N atoms and two S atoms from four different thiocyanate ligands, while the second type of CdII atom is coordinated by three N atoms and three S atoms from six different thiocyanate ligands. Neighbouring CdII atoms are linked by thiocyanate bridges to form a one‐dimensional zigzag chain and a one‐dimensional coordination polymer. Hydrogen‐bond interactions are involved in the formation of the supramolecular network.  相似文献   

17.
Reaction of copper(I) thiocyanate and triphenylphosphane with the bidentate Schiff base N,N′‐bis(trans‐2‐nitrocinnamaldehyde)ethylenediamine {Nca2en, (1); systematic name (1E,1′E,2E,2′E)‐N,N′‐(ethane‐1,2‐diyl)bis[3‐(2‐nitrophenyl)prop‐2‐en‐1‐imine]}, C20H18N4O4, in a 1:1:1 molar ratio in acetonitrile resulted in the formation of the complex {(1E,1′E,2E,2′E)‐N,N′‐(ethane‐1,2‐diyl)bis[3‐(2‐nitrophenyl)prop‐2‐en‐1‐imine]‐κ2N,N′}(thiocyanato‐κN)(triphenylphosphane‐κP)copper(I)], [Cu(NCS)(C20H18N4O4)(C18H15P)] or [Cu(NCS)(Nca2en)(PPh3)], (2). The Schiff base and copper(I) complex have been characterized by elemental analyses, IR, electronic and 1H NMR spectroscopy, and X‐ray crystallography [from synchrotron data for (1)]. The molecule of (1) lies on a crystallographic inversion centre, with a trans conformation for the ethylenediamine unit, and displays significant twists from coplanarity of its nitro group, aromatic ring, conjugated chain and especially ethylenediamine segments. It acts as a bidentate ligand coordinating via the imine N atoms to the CuI atom in complex (2), in which the ethylenediamine unit necessarily adopts a somewhat flattened gauche conformation, resulting in a rather bowed shape overall for the ligand. The NCS ligand is coordinated through its N atom. The geometry around the CuI atom is distorted tetrahedral, with a small N—Cu—N bite angle of 81.56 (12)° and an enlarged opposite angle of 117.29 (9)° for SCN—Cu—P. Comparisons are made with the analogous Schiff base having no nitro substituents and with metal complexes of both ligands.  相似文献   

18.
The electron impact-induced fragmentation of azobenzenes and its d1, d2, d5, d10, and 15N analogues was studied by mass Spectrometry and ion kinetic energy spectroscopy. The main fragment ions found in the mass spectrum of azobenzene are due to two parallel stepwise processes from the molecular ion: the expulsion of N2 and two hydrogen radicals producing an ion at m/z 152 having possibly a biphenylene radical cation structure and loss of C6H5? and N2. Except in the elimination of two hydrogen atoms from [M ? N2] ions, hydrogen scrambling between the phenyl rings does not feature in azobenzene upon electron impact.  相似文献   

19.
Hindered rotation in two o-substituted N,N-dimethylthiobenzamides was investigated by variable temperature 1H NMR spectroscopy. For one compound, the enthalpies and entropies of activation for (i) thioamide group rotation around the Ar? C bond and (ii) dimethylamino group rotation around the C? N bond were obtained by full line shape analysis; a possible coupling between the two processes is discussed. A new simple method has also been applied to the analysis of dimethylamino exchange and results are in complete agreement with the full line shape analysis with somewhat better precision.  相似文献   

20.
[11C]2-(4′-(Methylamino)phenyl)-6-hydroxybenzothiazole ([11C]PIB) is a most potential PET tracer for detecting the β-amyloid plaques in Alzheimer's disease. Here the syntheses of three fluorinated PIB, namely 2-(4′-(methylamino)phenyl)-6-fluoroethoxybenzothiazole (O-FEt-PIB), 2-(4′-(methylamino)phenyl)-6-fluoro-benzothiazole (F-N-Me) and 2-(4′-(dimethylamino)phenyl)-6-fluorobenzo-thiazole (F-N,N-Me), and the radiosynthesis of one corresponding 18F-labeled PIB compound, [18F]O-FEt-PIB, as well as their in vitro/in vivo biological characters were reported. The structures of the products were confirmed by IR, 1H NMR, EI/ESI-MS, elemental analysis and HRMS techniques. The radiolabeled product was characterized by radio-TLC and radio-HPLC and purified by semi-preparative radio-HPLC. The suitable biological characters showed these tracers were potential to be developed as probes for detecting β-amyloid plaques in Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号