首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An efficient synthesis of the unknown 2′-deoxy-D-threo-tubercidin ( 1b ) and 2′, 3′-dideoxy-3′-fluorotubercidin ( 2 ) as well as of the related nucleosides 9a, b and 10b is described. Reaction of 4-chloro-7-(2-deoxy-β-D-erythro-pentofuranosyl)-7H-pyrrolo[2,3-d]pyrimidine ( 5 ) with (tert-butyl)diphenylsilyl chloride yielded 6 which gave the 3′-keto nucleoside 7 upon oxidation at C(3′). Stereoselective NaBH4 reduction (→ 8 ) followed by deprotection with Bu4NF(→ 9a )and nucleophilic displacement at C(6) afforded 1b as well as 7-deaza-2′-deoxy-D-threo-inosine ( 9b ). Mesylation of 4-chloro-7-{2-deoxy-5-O-[(tert-butyl)diphenylsilyl]-β-D-threo-pentofuranosyl}-7H-pyrrolo[2,3-d]-pyrimidine ( 8 ), treatment with Bu4NF (→ 12a ) and 4-halogene displacement gave 2′, 3′-didehydro-2′, 3′-dideoxy-tubercidin ( 3 ) as well as 2′, 3′-didehydro-2′, 3′-dideoxy-7-deazainosne ( 12c ). On the other hand, 2′, 3′-dideoxy-3′-fluorotubercidin ( 2 ) resulted from 8 by treatment with diethylamino sulfurtrifluoride (→ 10a ), subsequent 5′-de-protection with Bu4NF (→ 10b ), and Cl/NH2 displacement. 1H-NOE difference spectroscopy in combination with force-field calculations on the sugar-modified tubercidin derivatives 1b , 2 , and 3 revealed a transition of the sugar puckering from the 3′T2′ conformation for 1b via a planar furanose ring for 3 to the usual 2′T3′ conformation for 2.  相似文献   

2.
The synthesis of the polyhalogenated phenylalanines Phe(3′,4′,5′-Br3) ( 3 ), Phe(3′,5′-Br2-4′-Cl) ( 4 ) and DL -Phe (2′,3′,4′,5′,6′-Br5) ( 9 ) is described. The trihalogenated phenylalanines 3 and 4 are obtained stereospecifically from Phe(4′-NH2) by electrophilic bromination followed by Sandmeyer reaction. The most hydrophobic amino acid 9 is synthesized from pentabromobenzyl bromide and a glycine analogue by phase-transfer catalysis. With the amino acids 4, 9 , Phe(4′-I) and D -Phe, analogues of [1-sarcosin]angiotensin II ([Sar1]AT) are produced for structure-activity studies and tritium incorporation. The diastereomeric pentabromo peptides L - and D - 13 are separated by HPLC. and identified by catalytic dehalogenation and comparison to [Sar1]AT ( 10 ) and [Sar1, D -Phe8]AT ( 14 ).  相似文献   

3.
4.
Intramolecular cyclisation of properly protected and activated derivatives of 2′,3′-secouridine ( = 1-{2-hydroxy-1-[2-hydroxy-1-(hydroxymethyl)ethoxy]-ethyl}uracil; 1 ) provided access to the 2,2′-, 2,3′-, 2,5′-, 2′,5′-, 3′,5′-, and 2′,3′-anhydro-2′,3′-secouridines 5, 16, 17, 26, 28 , and 31 , respectively (Schemes 1–3). Reaction of 2′,5′-anhydro-3′-O-(methylsulfonyl)- ( 25 ) and 2′,3′-anhydro-5′-O-(methylsulfonyl)-2′,3′-secouridine ( 32 ) with CH2CI2 in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene generated the N(3)-methylene-bridged bis-uridine structure 37 and 36 , respectively (Scheme 3). Novel chiral 18-crown-6 ethers 40 and 44 , containing a hydroxymethyl and a uracil-1-yl or adenin-9-yl as the pendant groups in a 1,3-cis relationship, were synthesized from 5′-O-(triphenylmethyl)-2′,3′-secouridine ( 2 ) and 5′-O,N6-bis(triphenylmethyl)-2′,3′-secoadenosine ( 41 ) on reaction with 3,6,9-trioxaundecane-1,11-diyl bis(4-toluenesulfonate) and detritylation of the thus obtained (triphenylmethoxy) methylcompound 39 and 43 , respectively (Scheme 4).  相似文献   

5.
2′‐C‐Methylnucleosides are known to exhibit antiviral activity against Hepatitis C virus. Since the inhibitory activity depends on their intracellular conversion to 5′‐triphosphates, dosing as appropriately protected 5′‐phosphates or 5′‐phosphorothioates appears attractive. For this purpose, four potential pro‐drugs of 2′‐C‐methylguanosine, i.e., 3′,5′‐cyclic phosphorothioate of 2′‐C‐methylguanosine and 2′‐C,O6‐dimethylguanosine, 1 and 2 , respectively, the S‐[(pivaloyloxy)methyl] ester of 2′‐C,O6‐dimethylguanosine 3′,5′‐cyclic phosphorothioate and the O‐methyl ester of 2′‐C,O6‐dimethylguanosine 3′,5′‐cyclic phosphate, 3 and 4 , respectively, have been prepared.  相似文献   

6.
The 1,2′,3,3′,5′,6′-hexahydro-3-phenylspiro[isobenzofuran-1,4′-thiopyran] ring system ( 2a ) has been prepared from o-bromobenzoic acid. The 1,2′,3,3′,5′,6′-hexahydro-3-phenylspiro[isobenzofuran-1,4′-pyran] ring system ( 3a ) has been prepared from 2-bromobenzhydrol methyl ether. Several 3-(dimethylaminoalkyl) derivatives of both 2a and 3a were prepared by lithiation followed by alkylation.  相似文献   

7.
Formylation of 2,2′,5′,2′-terfuran ( 1 ) with N-methylformanilide and phosphorus oxychloride gave 5-formyl-2,2′,5′,2′-terfuran ( 2 ) and 5,5′-diformyl-2,2′5′,2′-terfuran ( 3 ). Reduction of 2 and 3 afforded 5-hydroxymethyl-2,2′,5′,2′-terfuran ( 4 ) and 5,5′ dihydroxymethyl-2,2′,5′,2′-terfuran ( 5 ), respectively. Terfuran 1 reacted with phenylmagnesium bromide to give 5-(phenylhydroxymethyl)-2,2′,5′,2′-terfuran ( 6 ), and was carbonated to 5-carboxy 2,2′,5′,2′-terfuran ( 7 ) and 5,5′-dicarboxy-2,2′,5′,2′-terfuran ( 8 ). Bromination of 1 with N-bromosuccinimide gave 5,5′-dibromo 2,2′,5′,2′-terfuran ( 9 ).  相似文献   

8.
The convergent syntheses of 3-deazapurine 2′-deoxy-β-D -ribonucleosides and 2′,3′-dideoxy-D -ribonucleosides, including 3-deaza-2′-deoxyadenosine ( 1a ) and 3-deaza-2′,3′-dideoxyadenosine ( 1b ) is described. The 4-chloro-lH-imidazo[4,5-c]pyridinyl anion derived from 5 was reacted with either 2′-deoxyhalogenose 6 or 2′,3′-dideoxyhalogenose 10 yielding two regioisomeric (N1 and N3) glycosylation products. They were deprotected and converted into 4-substituted imidazo[4,5-c]pyridine 2′-deoxy-β-D -ribonucleosides and 2′,3′-dideoxy-D -ribonucleosides. Compounds 1a and 1b proved to be more stable against proton-catalyzed N-glycosylic bond hydrolysis than the parent purine nucleosides and were not deaminated by adenosine deaminase.  相似文献   

9.
A terpyridine derivative DPTP [di-(4-methylphenyl)-2,2':6',2"-terpyridine] was conveniently synthesized from 2-bromopyridine via halogen-dance reaction, Kharash coupling and Stille coupling reaction. Then its corresponding ruthenium complex Ru-DPTP [N,N,N-4,4''-di-(4-methy,phenyl)-2,2':6',2"-terpyridine-N,N,N-tris(is,-thi,cyanat,)- ruthenium(H) ammonium] was obtained and fully characterized by IR, UV-Vis, ESI MS and elemental analysis. The MLCT absorption band of Ru-DPTP was blue-shifted from 570 to 500 nm upon addition of Hg^2+. Among a series of surveyed metal ions, the complex showed a unique recognition to Hg^2+, indicating that it can be used as a selective colorimetric sensor for Hg^2+.  相似文献   

10.
The crystal structures of triethyl­ammonium adenosine cyclic 2′,3′‐phosphate {systematic name: triethyl­ammonium 4‐(6‐amino­purin‐9‐yl)‐6‐hydroxy­methyl‐2‐oxido‐2‐oxoperhydro­furano[3,4‐c][1,3,2]dioxaphosphole}, Et3NH(2′,3′‐cAMP) or C6H16N+·C10H11N5O6P, (I), and guanosine cyclic 2′,3′‐phosphate monohydrate {systematic name: triethyl­ammonium 6‐hydroxy­methyl‐2‐oxido‐2‐oxo‐4‐(6‐oxo‐1,6‐dihydro­purin‐9‐yl)perhydro­furano[3,4‐c][1,3,2]dioxaphosphole monohydrate}, [Et3NH(2′,3′‐cGMP)]·H2O or C6H16N+·C10H11N5O7P·H2O, (II), reveal different nucleobase orientations, viz. anti in (I) and syn in (II). These are stabilized by different inter‐ and intra­molecular hydrogen bonds. The structures also exhibit different ribose ring puckering [4E in (I) and 3T2 in (II)] and slightly different 1,3,2‐dioxaphospho­lane ring conformations, viz. envelope in (I) and puckered in (II). Infinite ribbons of 2′,3′‐cAMP and helical chains of 2′,3′‐cGMP ions, both formed by O—H⋯O, N—H⋯X and C—H⋯X (X = O or N) hydrogen‐bond contacts, characterize (I) and (II), respectively.  相似文献   

11.
The preparation of 1′-and 3′-amino-5′,6′,7′,8′-tetrahydro-2′-acetonaphthones (IIIa and IIIb) is described, by reduction of the low temperature nitration products of 5′,6′,7′,8′-tetrahydro-2′-acetonaphtone (I). The structures of the nitro isomers (IIa and IIb), and the reduction products, IIIa and IIIb, were elucidated spectroscopically. By known reactions, a series of new heterocyclic compounds prepared from the o-aminoketones, IIIa and IIIb, resulted in two series of new heterocyclic compounds.  相似文献   

12.
A series of 6,8-disubstituted-9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphates were prepared employing preformed 9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphate precursors. Three synthetic approaches were utilized to accomplish the syntheses. The first approach involved a study of the order of nucleophilic substitution, 6 vs 8, of the intermediate 6,8-dichloro-9-β-D-ribofuranosyipurine 3′,5′-cyclic phosphates ( 2 ) with various nucleophilic agents to yield 8-amino-6-chloro-, 8-chloro-6-(diethylamino)-, 6-chloro-8-(diethylamino)-, 6,8-bis-(diethylamino)- and 8-(benzylthio)-6-chloro-9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphate (4, 9, 10, 11, 13) respectively and 6-chloro-9-β-D-ribofuranosylpurin-8-one 3′,5′-cyclic phosphate ( 5 ) and 8-amino-9-β-D-ribofuranosylpurine-6-thione 3′,5′-cyclic phosphate ( 6 ). The order of substitution was compared to similar substitutions on 6,8-dichloropurines and 6,8-dichloropurine nucleosides. The second scheme utilized nucleophilic substitution of 6-chloro-8-substituted-9-β-D-ribofuranosylpurine 3′,5′-cyclic, phosphates obtained from the corresponding 8-subslituted inosine 3′,5′-cyclic phosphates by phosphoryl chloride, 6,8-bis-(benzylthio)-, 6-(diethylamino)-8-(benzylthio),8-(p-chlorophenylthio(-6-(diethylamino)- and 6,8-bis-(methyl-thio)-9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphates ( 14, 12, 20 , and 21 ) respectively, were prepared in this manner. The final scheme involved N1-alkylation of an 8-substituted adenosine 3′,5′-cyclic phosphate followed by a Dimroth rearrangement to give 6-(benzylamino)-8-(methylthio)- and 6-(benzylamino)-8-bromo-9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphate ( 24 and 25 ).  相似文献   

13.
An efficient and green reactions of isatins, 3‐amine‐1H‐pyrazole (5‐methyl‐1H‐pyrazol‐3‐amine) and 1,3‐diketone in aqueous medium for the synthesis of novel 1′,7′,8′,9′‐tetrahydrospiro[indoline‐3,4′‐pyrazolo[3,4‐b]quinoline]‐2,5′(6′H)‐dione derivatives were reported in this research. The advantages of this reaction are simple operation, mild‐reaction conditions, wide scope substrate, high yields, and friendly environment. The products were confirmed by IR, 1H NMR, 13C NMR, and HRMS.  相似文献   

14.
The molecular structures of trichlorido(2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)gallium(III), [GaCl3(C15H11N3)], and tribromido(2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)gallium(III), [GaBr3(C15H11N3)], are isostructural, with the GaIII atom displaying an octahedral geometry. It is shown that the Ga—N distances in the two complexes are the same within experimental error, in contrast to expected bond lengthening in the bromide complex due to the lower Lewis acidity of GaBr3. Thus, masking of the Lewis acidity trends in the solid state is observed not only for complexes of group 13 metal halides with monodentate ligands but for complexes with the polydentate 2,2′:6′,2′′‐terpyridine donor as well.  相似文献   

15.
The 2′-deoxyisoguanosine ( 1 ) was synthesized by a two-step procedure from 2′-deoxyguanosine ( 5 ). Amination of silylated 2′-deoxyguanosine yielded 2-amino-2′-deoxyadenosine ( 6 ) which was subjected to selective deamination of the 2-NH2 group resulting in compound 1 . Also 2′,3′-dideoxyisoguanosine ( 2 ) was prepared employing the photo-substitution of the 2-substituent of 2-chloro-2′,3′-dideoxyadenosine ( 4 ). The latter was synthesized by Barton deoxygenation from 2-chloro-2′-deoxyadenosine ( 3 ) or via glycosylation of 2,6-dichloropurine ( 12 ) with the lactol 13 . Compound 1 was less stable at the N-glycosylic bond than 2′-deoxyguanosine ( 5 ). The dideoxynucleoside 2 was deaminated by adenosine deaminase affording 2′,3′-dideoxyxanthosine ( 17 ).  相似文献   

16.
17.
The 1′,2′-unsaturated 2′,3′-secoadenosine and 2′,3′-secouridine analogues were synthesized by the regioselective elimination of the corresponding 2′,3′-ditosylates, 2 and 18 , respectively, under basic conditions. The observed regioselectivity may be explained by the higher acidity and, hence, preferential elimination of the anomeric H–C(1′) in comparison to H? C(4′). The retained (tol-4-yl)sulfonyloxy group at C(3′) of 3 allowed the preparation of the 3′-azido, 3′-chloro, and 3′-hydroxy derivatives 5–7 by nucleophilic substitution. ZnBr2 in dry CH2Cl2 was found to be successful in the removal (85%) of the trityl group without any cleavage of the acid-sensitive, ketene-derived N,O-ketal function. In the uridine series, base-promoted regioselective elimination (→ 19 ), nucleophilic displacement of the tosyl group by azide (→ 20 ), and debenzylation of the protected N(3)-imide function gave 1′,2′-unsaturated 5′-O-trityl-3′-azido-secouridine derivative 21 . The same compound was also obtained by the elimination performed on 2,2′-anhydro-3′-azido-3′-azido-3′-deoxy-5′-O-2′,3′-secouridine ( 22 ) that reacted with KO(t-Bu) under opening of the oxazole ring and double-bond formation at C(1′).  相似文献   

18.
The nitration of dithieno[3,4-b:3′,2′-d]pyridine ( 2 ) and dithieno[2,3-b:3′,2′-d]pyridine ( 3 ) has been studied. Nitration of 2 occurred in both positions of the c-fused thiophene ring, while 3 was predominantly substituted in the 2-position. The structures of the nitro derivatives were proven by extensive use of 1H and 13C nmr spectroscopy.  相似文献   

19.
To measure the hydrophobic character of the ribose moiety of doridosine on the adenosine receptors, 2′,3′-didehydro-2′,3′-dideoxydoridosine (2) and 2′,3′-dideoxydoridosine (3) were prepared. Initial treatment of doridosine with N,N-dimethylformamide diethylacetal, and subsequently with tert-butyldimethylsilyl chloride gave 5. Compound 5 was then reacted with 1,1′-thiocarbonyldiimidazole and the resulting thionocarbonate 6 was heated with triethyl phosphite at 135°C to afford 7. Treatment of compound 7 with tetrabutylammonium fluoride and methanolic ammonia furnished compound 2 in good yield. Compound 2 was subjected to catalytic hydrogenation affording compound 3 in 85% yield.  相似文献   

20.
The stereochemical course of the epoxide-induced oxidative rearrangement of ribonucleoside cyclic 3′,5′-phosphorothioates into the corresponding 2′,3′-phosphates has been determined using styrene [18O] oxide and (Sp)-uridine cyclic 3′,5′-phosphorothioate. The evidence of full stereoselectivity of this reaction is presented and mechanistic implications of the presence of the nucleoside 2′-hydroxyl group are discussed in terms of a classical Hamer Mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号