首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
N-methylacrylamide (NMAAm) and N-methylmethacrylamide (NMMAm) were polymerized to give polymer microspheres containing living propagating radicals. The microsphere polymer radicals were allowed to react with some binary mixtures of vinyl monomers including alternating copolymerization combinations. The reaction processes were investigated by ESR spectroscopy. In the poly(NMMAm) radical/methyl methacrylate (MMA)/styrene (St) system, the propagating radical from MMA was mainly observed at the higher MMA concentration, while polySt radical prevailed at the lower MMA concentration. In the poly(NMMAm) radical/α-methylstyrene (α-MeSt)/diethyl fumarate system, the α-MeSt radical was exclusively observed, while the maleic anhydride (MAn) radical was predominantly observed in the α-MeSt/MAn system. In the MAn/diphenylethylene system, the propagating radicals from both monomers were observed at comparable concentrations. The poly(NMAAm) microsphere radical behaved differently in the reaction with the MMA/St mixture. The poly(NMAAm) microsphere was found to incorporate preferentially St, leading to formation of the St radical. The St preference was enhanced in the St/cyclohexyl methacrylate (CHMA) system. These results were in agreement with those of block copolymerization via the reaction of poly(NMAAm) radical with the MMA/St or CHMA/St mixture, where the compositions of the resulting polymers were analyzed by pyrolysis gas chromatography.  相似文献   

2.
Poly[acryloyl-L-valine (ALV)] microspheres containing peroxy ester groups were prepared by radical copolymerization of ALV with a small amount of di-tert-butyl peroxyfumarate. When the microspheres were irradiated in the presence of second vinyl monomers, long-lived propagating radicals of the second monomers were formed in the microspheres by the reaction of microsphere polymer radicals with the monomers. The presence of a minute quantity of ethyl alcohol served to soften the microspheres and made the polymer radicals more mobile in the microspheres. As a result, sharper ESR spectra of the propagating radicals were observed although their lifetimes became shorter. This microsphere method also yielded easily the stable propagating radicals of a-methylstyrene and 1,1-diphenylethylene which have no homopolymerizability in usual radical polymerization. When N-n-propyldimethacroylamide and N,N′-dimethyl-N,N′-dimethacroylhydrazine, which undergo cyclopolymerization, were used as second monomer, uncyclized polymer radicals were only observed. Some discussions were given on the propagation mechanism of the cyclopolymerization.  相似文献   

3.
4.
The polymerization of N-methylmethacrylamide (NMMAm) with azobisisobutyronitrile (AIBN) was investigated kinetically in benzene. This polymerization proceeded heterogeously with formation of the very stable poly(NMMAm) radicals. The overall activation energy of this polymerization was calculated to be 23 kcal/mol. The polymerization rate (Rp) was expressed by: Rp = k[AIBN]0.63-0.68[NMMAm]1?2.5. Dependence of Rp on the monomer concentration increased with increasing NMMAm concentration. From an ESR study, cyanopropyl radicals escaping the solvent cage were found to be converted to the living propagating radicals of NMMAm in very high yields (ca. 90%). Formation mechanism of the living polymer radicals was discussed on the basis of kinetic, ESR spectroscopic, and electron microscopic results.  相似文献   

5.
6.
7.
The branching reaction in the radical polymerization of vinyl acetate was studied kinetically. Branching occurs by polymer transfer as well as terminal double-bond copolymerization. The chain-transfer constants to the main chain (Cp,2) and to the acetoxy methyl group (Cp,1) on the polymer were calculated on the basis of the experimental data described in the preceding paper giving Cp,2 = 3.03 × 10?4, Cp,1 = 1.27 × 10?4 at 60°C, and Cp,2 = 2.48 × 10?4, Cp,1 = 0.52 × 10?4 at 0°C. Chain transfer to monomer is important with respect to the formation of the terminal double bond. The total values of transfer constants to the α- or β-position in the vinyl group and the acetoxymethyl group in vinyl acetate was determined to be 2.15 × 10?4 at 60°C. The transfer constant to the acetyl group in the monomer (Cm,1) was also evaluated to be 2.26 × 10?4 at 60°C from the quantitative determination of the carboxyl terminals in PVA. These facts suggest that the chain-transfer constant to the α- or β-position in the monomer (Cm,2) is nearly equal to zero within experimental error. Copolymerization reactivity parameters of the terminal double bond were also estimated. In conclusion, it has become clear that the formation of nonhydrolyzable branching by the terminal double-bond reaction can be almost neglected, and hence that the long branching in PVA is formed only by the polymer transfer mechanism. On the other hand, a large number of hydrolyzable branches in PVAc are prepared by the terminal double-bond reaction rather than by polymer transfer.  相似文献   

8.
The polymerization of vinyl acetate in N,N-dimethylformamide (DMF) at 60°C initiated by AIBN in the presence of [Fe(DMF)6](ClO4)3 and Fe(N3)3 had been studied. Fe(N3)3 was produced in situ by mixing solid sodium azide (NaN3) and hexakis(N,N-dimethylformamide) iron (III) perchlorate, [Fe(DMF)6](ClO4)3, in the ratio of 3:1. The velocity constant kx for the interaction of poly(vinyl acetate) radical with [Fe(DMF)6]3+ was found to be 1.44 × 103L mol?1 s?1 and that for the interaction of poly(vinyl acetate) radical with Fe(N3)3 to be 3.44 × 105 L mol?1 s?1 at 60°C.  相似文献   

9.
Hydroxy-terminated telechelic poly(2-chloroethyl vinyl ether) (poly(CEVE)) was synthesized by water-based end-capping reaction of living poly(CEVE) with the initiating system CH3CHCl OCH2CH2 OCOCH3/ZnCl2 in CH2Cl2 at −40°C and subsequent end-group transformation of the acetate (α-end) and aldehyde (ω-end) groups into hydroxy groups. The obtained polymers possess controlled molecular weights and narrow molecular weight distributions.  相似文献   

10.
Cationic copolymerizations of vinyl sulfides (VS) with some vinyl monomers with boron tri-fluoride-diethyl etherate catalyst were investigated to evaluate their monomer reactivities. The effects of VS on the copolymer yield and viscosity of the resulting copolymers revealed the inhibition or retardation mechanism which was explained in terms of the formation of a stable vinylsulfonium salt by the reaction between a propagating carbonium ion and VS monomer. From the results of copolymerizations of phenyl vinyl sulfide (PVS) with isobutyl vinyl ether (IBVE), β-chloroethyl vinyl ether (CEVE), α-methylstyrene (α-MeSt), and styrene (St), the relative reactivities of these monomers were found to be in the following order: IBVE > CEVE > PVS > α-MeSt > St. The relatively higher reactivity of PVS than St derivatives was explained on the basis of the conjugative and electron-donating nature of the VS monomer. The effects of alkyl and para-substituted phenyl groups in vinyl sulfides on their reactivities toward the propagating carbonium ion were correlated with polar factors and compared with those of the hydrolysis of α-mercaptomethyl chlorides. The transition state for the propagation reaction in cationic polymerization of VS was proposed to be a π-complex type structure.  相似文献   

11.
ABA-type block copolymers of poly(trimethylene carbonate) with poly(ethylene glycol) (Mn 6820), PTMC-b-PEG-b-PTMC, were synthesized by the ring-opening polymerization of 1,3-dioxan-2-one (trimethylene carbonate) in the presence of poly-(ethylene glycol) with stannous octoate catalyst, and the copolymers with various compositions were obtained. The PTMC-b-PEG-b-PTMC copolymers were characterized with Fourier transform infrared and nuclear magnetic resonance spectroscopies. The intrinsic viscosities of resulting copolymers increased with the increase of 1,3-dioxan-2-one content in feed while the molar ratio of monomer over catalyst kept constant. It has been observed that the glass transition temperature (Tg) of the PTMC segments in copolymers, recorded from differential scanning calorimetry, was dependent on the composition of copolymers. The melting temperature (Tm) of PEG blocks in copolymer was lower than that of PEG polymer, and then disappeared as the length of PTMC blocks increased. The results of dynamic contact angle measurement clearly revealed that the hydrophilicity of resulting copolymers increased greatly with the increase of PEG content in copolymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 695–702, 1998  相似文献   

12.
Nitroxide‐mediated ‘living’ free radical polymerisation (LREP) was employed for the first time to prepare graft copolymer by having arylated poly (vinyl chloride) (PVC‐Ph) as a backbone and polystyrene (PS) as branches. The graft copolymerization of styrene was initiated by arylated PVC carrying 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) groups as a macroinitiator. Thus, the arylated PVC was prepared in the mild conditions and these reaction conditions could overcome the problem of gelation and crosslinking in polymers. Then, 1‐hydroxy TEMPO was synthesized by the reduction of TEMPO with sodium ascorbate. This functional nitroxyl compound was coupled with brominated arylated PVC (PVC‐Ph‐Br). The resulting macro‐initiator (PVC‐Ph‐TEMPO) for ‘living’ free radical polymerization was then heated in the presence of styrene to form graft copolymer. DSC, GPC, 1HNMR, and FT‐IR spectroscopy were employed to investigate the structure of the polymers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Poly(vinyl acetate-methyl methacrylate) (VAc-MMA) copolymer microspheres were prepared using suspension polymerization at low temperature initiated with 2,2'-azobis(2,4-dimethyl valeronitrile) (ADMVN). The poly(VAc-MMA) copolymer microspheres can be used over a large area where homopolymers, polyvinyl acetate (PVAc) and methyl methacrylate (PMMA) microspheres are capable of being put to use. The prepared microspheres were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Obtained copolymer microspheres which have 200 μm average diameter and higher thermal stability than those of homopolymer.  相似文献   

14.
Surface modification of poly(tetrafluoroethylene) (PTFE) films by well-defined comb copolymer brushes was carried out. Peroxide initiators were generated directly on the PTFE film surface via radio frequency Ar plasma pretreatment, followed by air exposure. Poly(glycidyl methacrylate) (PGMA) brushes were first prepared by surface-initiated reversible addition-fragmentation chain transfer polymerization from the peroxide initiators on the PTFE surface in the presence of a chain transfer agent. Kinetics study revealed a linear increase in the graft concentration of PGMA with the reaction time, indicating that the chain growth from the surface was consistent with a "controlled" or "living" process. alpha-Bromoester moieties were attached to the grafted PGMA by reaction of the epoxide groups with 2-bromo-2-methylpropionic acid. The comb copolymer brushes were subsequently prepared via surface-initiated atom transfer radical polymerization of two hydrophilic vinyl monomers, including poly(ethylene glycol) methyl ether methacrylate and sodium salt of 4-styrenesulfonic acid. The chemical composition of the modified PTFE surfaces was characterized by X-ray photoelectron spectroscopy.  相似文献   

15.
Studies of properties such as water sorption of grafted wool have shown the importance of the location of the polymer in the fiber. Electron microscopy and low-angle x-ray diffraction studies have been used to determine the location of grafted polystyrene in wool. Samples grafted from 15 to 800% (dry weight increase) all exhibit a large increase in contrast in the cell membranes (IR) and nuclear-remnant regions (NR) in the electron micrographs. This is considered to be due in part to an unevenness in mechanical response to sectioning and in part to the deposition of ungrafted homopolymer in IR and NR, particularly at grafts of greater than about 100%. Analysis of the change in the 83 A. equatorial x-ray reflection suggests that most of the grafted polymer resides in the keratinous matrix regions between the microfibrils within the cortical cells. At larger grafts the wool still retains its basic histological character, but the increase in this spacing is no longer proportional to the amount of graft, and the desposition of polymer becomes very inhomogeneous.  相似文献   

16.
The reactions of OH radical with Cl?, Br?, I?, and F? ions have been studied by entrapping the product radicals as polymer endgroup which have been detected and estimated by the sensitive dye partition technique. The rate constants of the reactions with Br?, Cl?, and F? ions have been determined to be 1.51 × 109, 1.32 × 109, and 0.92 × 109 L mol?1 s?1, respectively at 25°C and pH 1.00. Oxidation of I? ions liberates I, which inhibits the polymerization and the reaction could not be followed by polymer endgroup analysis. The observed order of reactivity Br? > Cl? > F? is in accordance with the electron affinities of the halide ions. The acidity of the reaction medium has a strong influence on the rate of reaction. With Br? ions, the rate constant of the reaction falls from 1.51 × 109 to 0.75 × 109 L mol?1 s?1 at 25°C as the pH is raised from 1.0 to 2.8. The method is simple and accurate and can be applied to study very reactive radicals.  相似文献   

17.
用示差扫描量热法(DSC)研究了线形多嵌段聚氨酯(PU)与聚氯乙烯(PVC)、氯化聚氯乙烯(CPVC)共混相容性,说明了PU/VC、PU/CPVC的相容是由于共混物中形成了新的氢键的缘故.聚酯型聚氨酯与PVC、CPVC的相容性要好子聚酸型聚氨酯,CPVC与PU的相容性又要好于PVC.聚氨酯中硬段的引入不利于PU/PVC、PU/CPVC的相容性.  相似文献   

18.
Radical copolymerization of dialkyl fumarates (DRF) with various vinyl monomers was carried out in benzene at 60°C. The monomer reactivity ratios, r1 and r2, were determined from the comonomer-copolymer composition curves. The relative reactivity of DRFs with various ester substituents toward a polystyryl radical was revealed to depend on both steric and polar effects of the ester groups. It has also been clarified that α-substituents of the polymer radical have a significant role in addition of DRF, from the comparison of the monomer reactivity ratios determined in copolymerizations with monosubstituted and 1,1-disubstituted ethylenes. The absolute cross-propagation rate constants were also evaluated and discussed. © 1992 John Wiley & Sons, Inc.  相似文献   

19.
In this work, we report a gas-phase polymerization approach to create end-grafted vinyl based polymer films on silicon oxide based substrates. The "surface-initiated vapor deposition polymerization" (SI-VDP) of vaporized vinyl monomers, via the nitroxide-mediated free radical polymerization mechanism, was developed to fabricate various homo- and block copolymer brushes from surface-bound initiators, 1-(4'-oxa-2'-phenyl-12'-trimethoxysilyldodecyloxy)-2,2,6,6-tetra-methylpiperidine ("TEMPO"). The resulting polymer thin films were characterized by the Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, ellipsometry, and contact angle goniometry, respectively, to identify the surface composition, film thickness, surface coverage, and water contact angles. Through the SI-VDP, end-grafted polymer films of polystyrene (PSt), poly(acrylic acid) (PAAc), poly(N-(2-hydroxypropyl) methacrylamide) (PHPMA), and poly(N-isopropylacrylamide) (PNIPAAm) with 10-200 nm thicknesses were fabricated. Furthermore, the block copolymer films of PAAc (1st block)-b-PSt (2nd block), PSt (1st block)-b-PAAc (2nd block), and a triblock copolymer film of PAAc (1st)-b-PSt (2nd)-b-PHPMA (3rd), were also fabricated, suggesting the "renewability" of the TEMPO-initiated polymerization in the SI-VDP scheme. It is also noticed that the SI-VDP is more efficient than the conventional solution phase polymerization in producing functional polymer brushes such as PNIPAAm, PAAc, or PAAc-b-PSt end-grafted films. In summary, our studies have shown clear advantages of the SI-VDP setup for the nitroxide-mediated polymerization scheme in controlling synthesis of end-grafted homo- and copolymer thin films.  相似文献   

20.
A simple and effective way for TiO(2) to be deposited on silicon or indium tin oxide (ITO) substrates has been achieved by using a poly(styrene-block-4-vinyl pyridine) (PS-b-P4VP) block copolymer template. In particular, a mechanism for the formation of TiO(2) within the P4VP phase was developed. Within this model, the TiO(2) deposition occurs by swelling of the protonated P4VP segments followed by transport of Ti precursor, probably protonated Ti(OH)(4) given the low pH conditions used, into the swollen P4VP followed by condensation into TiO(2) during the heating/plasma etch processes. TiO(2) nanostructure morphology is affected by pH and deposition temperatures, because these parameters affect the degree of protonation of P4VP segments and diffusion of the titanium(IV) bis(ammonium lactato)dihydroxide (TALH) precursor into the film. A pH range of 2.1-2.5 for silicon substrates and pH = 2.1 for ITO substrates gave the narrower TiO(2) nanostructures distributions, and deposition at 70 °C gave TiO(2) nanostructures with more regular arrangements and smoother surface than those deposited at room temperature. The use of 1,4-diiodobutane as a P4VP cross-linking compound is demonstrated to be a critical parameter for maintaining good cylindrical surface morphology for both the block copolymer template and the TiO(2) nanostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号