首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal addition of CF3O3CF3(T) to CF2CCl2(E) has been investigated between 49.6 and 69.5°C. The initial pressure of CF3O3CF3 was varied between 7 and 240 torr and that of CF2CCl2 between 4 and 600 torr. Four products of formula CF3O(E)j OOCF3, where j = 1 → 4 are formed. The sum of the products Σ CF3O(E)jOOCF3 is equal to the amount of trioxide decomposed. The reaction is homogeneous. Its rate is not affected by the total pressure and the presence of inert gas. It is a free radical telomerization with four basic steps: thermal decomposition of CF3O3CF3 into CF3O. and CF3O2., chain initiation by addition of CF3O. to olefin incorporated in, and telomeric radicals termination. The consumption of alkene is well represented by the equation: where (d[E]/d[T]) = is the mean chain length of telomerization. varies from 1.45 at 1.5 torr of E to 3.3 at 400 torr of E. Above this pressure E has no influence on . The estimated value of the constant for the addition of telomeric radicals to alkene is:   相似文献   

2.
The kinetics of the gas-phase reaction of 2,2,2-trifluoroethyl iodide with hydrogen iodide has been studied over the temperature range of 525°K to 602°K and a tenfold variation in the ratio of CF3CH2I/HI. The experimental results are in good agreement with the expected free radical-mechanism: An analysis of the kinetic data yield: where θ =2.303RT in kcal/mol. If these results are combined with the assumption that E2 = 0 ± 1 kcal/mol, then one obtains DH (CF3CH2? I) = 56.3 kcal/mol. This result may be compared with DH(CH3CH2? I) = 52.9 kcal/mol and suggests that substitution of three fluorines for hydrogen in the beta position strengthens the C? I bond slightly.  相似文献   

3.
The reactions have been studied competitively in the vapor phase over the range of 52–204°C. The i-C3F7 radicals were generated by means of the reaction It was found that where θ = 2.303RT J/mol. Absolute Arrhenius parameters are derived for the reactions where R = CF3, C2F5, and i-C3F7.  相似文献   

4.
Metastable N2(A3Σu+), υ = 0, υ = 1, molecules are produced by a pulsed Tesla-type discharge of a dilute N2/Ar gas mixture. Rate coefficients for quenching these metastable levels by O2, O, N, and H were obtained by time-resolved emission measurements of the (0, 6) and (1, 5) Vegard–Kaplan bands. In units of cm3/mole · sec at 300°K and with an experimental uncertainty of ±20%, these rate coefficients for N2(A3Σu+) are Within the limits of error these coefficients apply to quenching N2(A3Σu+) υ′ = 1 as well.  相似文献   

5.
Aqueous iodination of trans-2-butenoic acid proceeds via hydrolysis of I2 to form HOI and I?, then rapid addition of HOI across the double bond to form the iodohydrin product. In the presence of iodate to keep iodide concentration low, the reaction proceeds at a conveniently measurable rate. The rate for the addition reaction is ?d[C4H6O2]/dt = 5900 [H+][C4H6O2][HOI]M/s at 25.0°C when [IO] = 0.025M and ionic strength = 0.3. The overall rate law in the presence of iodate is where [H+] and [IO] are total concentrations used to prepare the solution.  相似文献   

6.
The kinetics of the thermal bromination reaction have been studied in the range of 173–321°C. For the step we obtain where θ=2.303RT cal/mole. From the activation energy for reaction (11), we calculate that This is compared with previously published values of D(CF3?I). The relevance of the result to published work on kc for a combination of CF3 radicals is discussed.  相似文献   

7.
3,3-Dimethylbutanol-2 (3,3-DMB-ol-2) and 2,3-dimethylbutanol-2 (2,3-DMB-ol-2) have been decomposed in comparative-rate single-pulse shock-tube experiments. The mechanisms of the decompositions are The rate expressions are They lead to D(iC3H7? H) – D((CH3)2(OH) C? H) = 8.3 kJ and D(C2H5? H) – D(CH3(OH) CH? H) = 24.2 kJ. These data, in conjunction with reasonable assumptions, give and The rate expressions for the decomposition of 2,3-DMB-1 and 3,3-DMB-1 are and   相似文献   

8.
The kinetics of the gas phase reaction between NO2 and CF2CCl2 has been investigated in the temperature range from 50 to 80°C. The reaction is homogeneous. Three products are formed: O2NCF2CCl2NO2 and equimolecular amounts of CINO and of O2NCF2C(O)Cl. The rate of consumption of the reactants is independent of the total pressure, the reaction products, and added inert gases and can be represented by a second-order reaction: However, the distribution of the products is influenced by the pressure of the present gases, which favor the formation of the dinitro-compound in a specific way. The effect of CF2CCl2 is the greatest. In the absence of added gases, the ratio of O2NCF2CCl2NO2 to that of O2NCF2C(O)Cl is proportional to (CF2CCl2 + γP products). The experimental results can be explaned by the following mechanism: P and X represent the products and the added gases:   相似文献   

9.
The thermal decomposition of 1,1,1-trifluoro-2-chloroethane has been investigated in the single-pulse shock tube between 1120° and 1300deg;K at total reflected shock pressures from ~2610 to 3350 torr. Under these conditions, the major reaction is the α,α-elimination of hydrogen chloride, with The decomposition also involves the slower α,β-elimination of hydrogen fluoride, with the first-order rate constant given by At temperatures above 1270°K, two additional minor products were observed. These were identified as CF2CFCl and CF3CHCl2 and suggest C? Cl rupture as a third reaction channel leading to complicated kinetics.  相似文献   

10.
The reactions of NH(X3Σ) with NO, O2, and O have been studied in reflected and incident shock wave experiments. The source of NH in all the experiments was the thermal dissociation of isocyanic acid, HNCO. Time-histories of the NH(X3Σ) and OH(X2Π) radicals were measured behind the shock waves using cw, narrow-linewidth laser absorption at 336 nm and 307 nm, respectively. The second-order rate coefficients of the reactions: were determined to be: and cm3 mol−1 s−1, where ƒ and F define the lower and upper uncertainty limits, respectively. The branching fraction of channel defined as k3b/k3total, was determined to be 0.19 ± 0.10 over the temperature range of 2940 K to 3040 K.  相似文献   

11.
Pyrolysis of (CF3)2C(OH)CH2CH=CH2, the reverse of the reaction between perfluoroacetone and propene, has been studied in the gas phase between 475° and 598°K. Even at 573°K, the unimolecular reaction rate constant appears to be in its pressure-independent region at 20.0 torr pressure. In a quartz vessel, the decomposition is homogeneous. The specific unimolecular rate constant is where the limits are for one standard deviation. Combining these results with the previously reported results on the reverse reaction, the equilibrium constant for the reaction is It is noteworthy that in the temperature range of the study of the forward reaction (448° to 573°K), the percentage of back reaction in the times of the experiments varies from less than 0.1 to 1.5. Using group additivities and the above ΔH0, ΔH of (CF3)2CO is calculated to be ?325.2 kcal/mole at 600°K and the average C? C bond is 42.0 kcal/mole.  相似文献   

12.
Pulsed laser photolysis/laser-induced fluorescence (LIF) is utilized to measure absolute rate constants of CH radical reactions as a function of temperature and pressure. Multiphoton dissociation of CHBr3 at 266 nm is employed for the generation of CH (X2Π) radicals. The CH radical relative concentration is monitored by exciting fluorescence on the R1(2) line of the (A2Δ – X2Π) transition at 429.8 nm. A resistively heated cell allows temperature studies to be performed from room temperature to ≈?670 K. The following Arrhenius equations are derived: With the exception of SF6, the reactions of sulfur containing species proceed at rates that are near the theoretical gas kinetic collision frequency. Additionally, these reactions all have activation energies that are near zero or slightly negative. These observations are consistent with an insertion-decomposition mechanism being dominant under these conditions.  相似文献   

13.
The kinetics of the gas-phase thermal reaction between CF2(OF)2 and CO has been studied in a static system at temperatures ranging between 110 and 140°C. The only reaction products were CF2O and CO2, giving the following stoichiometry: The reaction is homogeneous. The rate is strictly second order in CF2(OF)2 and CO, and is not affected by the total pressure or by the presence of reaction products. Oxygen promotes a sensitized oxidation of CO and inhibits the formation of CF2O. The experimental results in the absence of oxygen can be explained by a chain mechanism similar to that proposed for the reaction between F2O and CO with an overall rate constant of From the experimental data obtained on the oxygen-inhibited reaction, the rate constant for the primary process can be calculated: The chain length v = 2.5 is independent of the temperature. Taking for collision diameters σ = 6 Å and σCO = 3.74 Å, a value α = 5.3 × 10?3 for the steric factor is obtained.  相似文献   

14.
The kinetics of the gamma-radiation-induced free radical chain reaction in solutions of C2Cl3F in cyclohexane (RH) was investigated over a temperature range of 87.5–200°C. The following rate constants and rate constant ratios were determined for the reactions: In competitive experiments in ternary solutions of C2Cl4 and C2Cl3F in cyclohexane the rate constant ratio k2c/k2a was determined By comparing with previous data for the addition of cyclohexyl radicals to other chloroethylenes it is shown that in certain cases the trends in activation energies for cyclohexyl radical addition can be correlated with the C? Cl bond dissociation energies in the adduct radicals.  相似文献   

15.
The formation and consumption of CH radicals during shock-induced pyrolysis of a few ppm ethane diluted in argon was measured by a ring-dye laser spectrometer. Absorption-over-time profiles, measured at a resonance line in the Q-branch of the A2Δ − X2Π band of CH at λ = 431.1311 nm, were recorded and transformed into CH concentrations by known absorption coefficients. By adding some hundred ppm of CO2 or O2 to the initial mixtures, the CH concentration profiles were significantly perturbed. Both the perturbed and unperturbed CH concentration profiles have been compared with calculations based on a reaction kinetic model. A sensitivity analysis revealed that the perturbation process was dominated by direct reactions of CH with the added molecules. By fitting calculated to observed CH profiles the following rate coefficients were obtained The experiments were performed in the temperature range between 2500 K and 3500 K. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
The abstraction of hydrogen and deuterium from 1,2-dichloroethane, 1,1,2-trichloroethane, and two of their deuterated analogs by photochemically generated ground state chlorine atoms has been investigatedin the temperature range 0–95°C using methane as a competitor. Rate constants and their temperature coefficients are reported for the following reactions Over the temperature range of this investigation an Arrhenius law temperature dependence was observed in all cases. Based on the adopted rate coefficient for the chlorination of methane [L.F. Keyser, J. Chem. Phys., 69 , 214 (1978)] which is commensurate with the present temperature range, the following rate constant values (cm3 s?1) are obtained: The observed pure primary, and mixed primary plus α- and β3-secondary kinetic isotope effects at 298 K are k3/k6 = 2.73 ± 0.08, and k1/k2 = 4.26 ± 0.12, respectively. Both show a normal temperature dependence decreasing to k3/k6 = 2.39 ± 0.06 and k1/k2 = 3.56 ± 0.09 at 370 K. Contrary to some simple theoretical expectations, the kinetic isotope effect for H/D abstraction decreases with increasing number of chlorine substituents in the geminal group in a parallel manner to the trend established previously for C1-substitution in the adjacent group. The occurrence of a β-secondary isotope effect, k4/k5, is established; this effect suggests a slight inverse temperature dependence.  相似文献   

17.
The reaction of CF3 radicals with NH3 has been studied over a wide temperature range 298–673 K, using the photolysis and the thermal decomposition of CF3I as the free radical source. It was found that the reaction could not be explained in terms of a simple mechanism in the whole temperature range because a marked pressure dependence on the rate of products formation and the presence of a dark reaction complicate the system at low temperatures. Thus, Arrhenius parameters for reaction (1) have been calculated relative to the CF3 recombination from data in the range 523–673 K where pure hydrogen transfer occurs. The rate constant expression is given by where kH/k is in units of cm3/2/mol1/2 s1/2 and θ = 2.303 RT/kJ/mol.  相似文献   

18.
The reactions of Cl and Br atoms with H2O2 have been studied in the range of 300–350 K using the very-low-pressure-reactor technique. It was found that metathesis to produce HX and HO2 is the only significant process (≤99%). For the reaction of Br k2 (300 K) = 1.3 ± 0.45 × 10?14 and k2 (350 K) = 3.75 ± 1.1 × 10?14 cm3/molecules·s, with an activation energy of 4.6 ± 0.7 kcal/mol. Using an estimated A factor for A2, we find suggesting that a best choice is E2 = 3.9 ± 0.4 kcal/mol. The relation of these values to ΔH (HO2) is discussed.  相似文献   

19.
The gas-phase photochlorination (λ = 436 nm) of the 1,1,1,2-C2H2Cl4 has been studied in the absence and the presence of oxygen at temperatures between 360 and 420°K. Activation energies have been estimated for the following reaction steps: The dissociation energy D(CCl3CHCl? O2) ± (24.8 ± 1.5) kcal/mole has also been estimated from the difference in activation energy of the direct and reverse reactions The mechanism is discussed and the rate parameters are compared to those obtained for a series of other chlorinated ethanes.  相似文献   

20.
The kinetics of the gas-phase thermal isomerization between trans- and cis-1,2-bis(trifluoromethyl)-1,2,3,3-tetrafluorocyclopropane as well as their decomposition to trans- and cis-perfluoro-2-butene, respectively, and CF2, was studied in the temperature range of 473–533°K, with an initial pressure of reactant of 1.5 to 7.0 Torr. Some runs were also made with the addition of SF6 as an inert gas up to a total pressure of 100 Torr. The reactions are first order and homogeneous. The rate constants for the geometrical isomerization fit the following Arrhenius relations: and the corresponding equations for the decomposition of the trans and cis-cyclopropane are .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号