首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent progress which allows laser flash photolysis investigation of opaque materials by using diffuse reflectance from analysing sources for the detection of laser induced transient species is described. Experimental details of nanosecond and picosecond diffuse reflectance laser photolysis systems are presented and methods of analysis of data are discussed. The potential of the technique for studying elementary reactions at interfaces is demonstrated with particular reference to bimolecular reactions of (a) the triplet state of acridine adsorbed on various porous silica surfaces and (b) ion-electron recombination following multi-photon ionisation of diphenyl polyenes adsorbed on γ-alumina. The mechanisms of formation and decay of these transient adsorbed species are discussed.  相似文献   

2.
A high‐resolution IR diode laser in conjunction with a Herriot multiple reflection flow‐cell has been used to directly determine the rate coefficients for simple alkanes with Cl atoms at room temperature (298 K). The following results were obtained: k(Cl + n‐butane) = (1.91 ± 0.10) × 10?10 cm3 molecule?1 s?1, k(Cl + n‐pentane) = (2.46 ± 0.12) × 10?10 cm3 molecule?1 s?1, k(Cl + iso‐pentane) = (1.94 ± 0.10) × 10?10 cm3 molecule?1 s?1, k(Cl + neopentane) = (1.01 ± 0.05) × 10?10 cm3 molecule?1 s?1, k(Cl + n‐hexane) = (3.44 ± 0.17) × 10?10 cm3 molecule?1 s?1 where the error limits are ±1σ. These values have been used in conjunction with our own previous measurements on Cl + ethane and literature values on Cl + propane and Cl + iso‐butane to generate a structure activity relationship (SAR) for Cl atom abstraction reactions based on direct measurements. The resulting best fit parameters are kp = (2.61 ± 0.12) × 10?11 cm3 molecule?1 s?1, ks = (8.40 ± 0.60) × 10?11 cm3 molecule?1 s?1, kt = (5.90 ± 0.30) × 10?11 cm3 molecule?1 s?1, with f( ? CH2? ) = f (? CH2? ) = f (?C?) = f = 0.85 ± 0.06. Tests were carried out to investigate the potential interference from production of excited state HCl(v = 1) in the Cl + alkane reactions. There is some evidence for HCl(v = 1) production in the reaction of Cl with shape n‐hexane. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 34: 86–94, 2002  相似文献   

3.
At 148–298 K, the rate constant for the reaction of methane molecules excited into bending vibration with atomic chlorine does not exceed by more than 30 times the corresponding constant for methane in thermal equilibrium. Consequently, at low temperatures and thermal equilibrium the reaction of methane with atomic chlorine proceeds through the vibrational ground state of methane.
, 148–298°K , , 30 , . , .
  相似文献   

4.
Abstract— The design of a typical flash photolysis equipment is considered in detail and the factors limiting the time resolution and the sensitivity are analyzed. The characteristics of low pressure discharge lamps are compared with those of high pressure arcs, of exploding foils and of the electromagnetic ‘pinch’ discharge. For the analytical flash, operating at a much lower power level, many satisfactory designs exist which give a good continuum and short duration. Methods of improving the optical system are discussed, and the special advantages of using a microscope optical system for investigating substances with high extinction coefficients are illustrated by an account of recent work on chlorophyll.  相似文献   

5.
The photochemical hydrogen abstraction reaction of pyrene-4,5-dione (3) has been investigated by laser flash photolysis. Excitation (λ = 355 nm) of a degassed solution of 3 in acetonitrile resulted in the formation of a detectable transient with absorption maxima at 380 and 470 nm. This transient decays with a lifetime of around 4.8 μs and is quenched by oxygen. This transient is most probably a triplet state of 3. Addition of hydrogen donors, such as 2-propanol; 1,4-cyclohexadiene or 4-methoxyphenol led to the formation of a new transient with λmax at 380, 500 nm and a broad absorption at 640 nm. This new transient slowly decays with second order kinetics and was assigned to the semiquinone radical obtained from the hydrogen abstraction reaction. Using DFT and AIM calculations the reactivity of 3 and 9,10-phenanthrenequinone (1) is best interpreted as a proton coupled electron transfer like mechanism for the hydrogen abstraction from 2-propanol.  相似文献   

6.
Laser flash photolysis of the photocyclization of triphenylimidazole (TPI) in ethyl alcohol at 308 nm. indicates that the dihydrophenanthroimidazole (DHPI) intermediate is produced rapidly, has a lifetime of 0.25 ms, and returns predominantly back to triphenylimidazole. Analysis of the decay channels for this intermediate indicates two rate constants: (1) k1 = 3.3 x 10(3) s(-1), associated with reversion back to triphenylimidazole and (2) k2 = 0.67 x 10(2) s(-1), which is associated with the conversion of the dihydrophenanthroimidazole to the photoproduct, 2-phenyl-9,10-phenanthroimidazole. The photoproduct is readily observed as an increasing component in the biexponential fluorescence decay data. Fluorescence lifetimes for triphenylimidazole and 2-phenyl-9,10-phenanthroimidazole (PPI) in ethyl alcohol were determined to be 1.76 and 8.21 ns, respectively, with no additional components in the fluorescence decay as the photochemistry proceeds. An additional transient absorption observed in the 450 nm. region, with a lifetime of 0.7 micros, decaying faster than the dihydrophenanthroimidazole intermediate, is assigned to the triplet state of triphenylimidazole.  相似文献   

7.
Buron C  Platz MS 《Organic letters》2003,5(19):3383-3385
[reaction: see text] Laser flash photolysis (LFP, 266 nm) of carboethoxyazide produces a mixture of the ethoxycarbonyl radical (lambda(max) = 333 nm, tau = 0.4 micros, CF(2)ClCFCl(2), ambient temperature) and triplet carboethoxynitrene (lambda(max) = 400 nm, tau = 1.5 micros, CF(2)ClCFCl(2), ambient temperature). The carbon-centered radical is selectively scavenged by oxygen allowing sole observation of the triplet nitrene. We deduce that the singlet nitrene has a lifetime between 2 and 10 ns in CF(2)ClCFCl(2) at ambient temperature.  相似文献   

8.
9.
Photoinduced charge separation (CS) and charge recombination (CR) processes of octathiophene-C60 and dodecathiophene-C60 dyad molecules (8T-C60 and 12T-C60, respectively) have been investigated by time-resolved absorption spectroscopy in the visible and near-IR regions. In toluene, 18T*-C60 and 112T*-C60 showed energy transfer to 1C*-moiety predominantly, while 60 contribution of CS was small. In various polar solvents, on the other hand, CS states were predominantly formed from both singlet-excited oligothiophene and 1C6*0-moiety because of lower CS level in polar environments. The CR process generating both the triplet state of oligothiophene and the ground state was confirmed in anisole and anisole/toluene mixture within a few nanoseconds. In more polar solvents (dielectric constant (∈s) > 7), CS states showed two components decay: Slow decay component showed lifetime in the hundred nanosecond-region, while fast component decayed within a few nanoseconds. For the mechanism of the long-living CS state in polar solvents (∈s > 7), equilibrium between the CS state and the triplet state was proposed. Furthermore, effects of length of oligothiophene on the CS and CR processes were discussed on the basis of the free energy changes.  相似文献   

10.
The recombination of chlorine atoms has been investigated by flash photolysis in the inert gases He, Ne, Ar, N2, CO2, CF4, SiF4, SF6, and C2F6. The pressure dependence of the reaction has been measured between 0.5 and about 100 atm for He, N2, and CO2. Experiments on the NO-catalyzed recombination of chlorine in the presence of He (0.5–100 atm) permitted a determination of the falloff curve of the reaction Cl+NO(+He)→ClNO(+He).  相似文献   

11.
This article deals with the equilibrated system (CH3)2SiCl2–(CH3)2GeCl2–[(CH3)2SiO]–[(CH3)2GeO], which consists of a range of various chain, and some ring, molecules resulting from scrambling of the bridging oxygen with the monofunctional chlorine atoms between the dimethylgermanium and dimethylsilicon moieties. The proton nuclear magnetic resonance of the methyl groups (which do not exchange appreciably under the conditions employed) bonded to the germanium and silicon atoms shows that there is a strong preference of the chlorine atoms for being on the dimethylgermanium and the bridging group for being on the dimethlysilicon moiety at equilibrium. This means that thermodynamic factors alone cause the germanium atoms to be found as “unreacted” dimethyldichlorogermane with siloxane polymers or to be preferentially arranged at the ends of the chain molecules in the case of the mixed germoxane–siloxanes. The NMR fine structure is interpreted in these terms, and it is shown that the experimental data may be fitted by appropriate calculations based on only four equilibrium constants, which define the arrangement of neighboring atoms about any given atom in a molecule and the size distribution of the linear molecules.  相似文献   

12.
Photodissociation of naphthalene (Np) dimer radical cation (Np2*+) to give naphthalene radical cation (Np*+) and Np and the subsequent regeneration of Np2*+ by the dimerization of Np*+ and Np were directly observed during the two-color two-laser flash photolysis in solution at room temperature. When Np2*+ was excited at the charge-resonance (CR) band with the 1064-nm laser, the bleaching and recovery of the transient absorption at 570 and 1000 nm, assigned to the local excitation (LE) and CR bands of Np2*+, respectively, were observed together with the growth and decay of the transient absorption at 685 nm, assigned to Np*+. The dissociation of Np2*+ proceeds via a one-photon process within the 5-ns laser flash to give Np*+ and Np in the quantum yield of 3.2 x 10(-3) and in the chemical yield of 100%. The recovery time profiles of Np2*+ at 570 and 1000 nm were equivalent to the decay time profile of Np*+ at 685 nm, suggesting that the dimerization of Np*+ and Np occurs to regenerate Np2*+ in 100% yield. Similar experimental results of the photodissociation and regeneration of Np2*+ were observed during the pulse radiolysis-laser flash photolysis of Np in 1,2-dichloroethane. The photodissociation mechanism can be explained based on the crossing between two potential surfaces of the excited-state Np2*+ and ground-state Np*+.  相似文献   

13.
With a nanosecond laser we studied flash photolysis of benzophenone (BP) dissolved in four different polymer films. We measured kinetics of decay of a triplet state of benzophenone (3)BP as well as kinetics of decay of benzophenone ketyl free radicals BPH(?). Polymer matrices have plenty of reactive C-H bonds, and the hydrogen abstraction by (3)BP leads to a formation of geminate pair which either recombines into molecular products or dissociates. Decay kinetics of (3)BP is well described by dispersive kinetics and in particular by the kinetic law suggested in Albery, W. J.; et al. J. Am. Chem. Soc. 1985, 107, 1854. We observed a broader distribution of rate constants in hard films. It was observed that the decay kinetics of transients radicals in the "hard" polymers is quite satisfactory described by the same law for dispersive kinetics. Kinetics of radicals decay in "soft" polymers is satisfactorily described as a diffusion-enhanced reaction. Effect of a hardness of polymer matrix on the measured kinetic parameters is discussed.  相似文献   

14.
Universal collision rate constants are calculated for ultracold collisions of two like bosonic or fermionic heteronuclear alkali-metal dimers involving the species Li, Na, K, Rb, or Cs. Universal collisions are those for which the short range probability of a reactive or quenching collision is unity such that a collision removes a pair of molecules from the sample. In this case, the collision rates are determined by universal quantum dynamics at very long range compared to the chemical bond length. We calculate the universal rate constants for reaction of the reactive dimers in their ground vibrational state v = 0 and for vibrational quenching of non-reactive dimers with v ≥ 1. Using the known dipole moments and estimated van der Waals coefficients of each species, we calculate electric field dependent loss rate constants for collisions of molecules tightly confined to quasi-two-dimensional geometry by a one-dimensional optical lattice. A simple scaling relation of the quasi-two-dimensional loss rate constants with dipole strength, trap frequency and collision energy is given for like bosons or like fermions. It should be possible to stabilize ultracold dimers of any of these species against destructive collisions by confining them in a lattice and orienting them with an electric field of less than 20 kV cm(-1).  相似文献   

15.
Laser flash photolysis of diazodibenzocyclohaptadiene gives the title carbene which is readily observed and which reacts by hydrogen abstraction to give the corresponding radical.  相似文献   

16.
Excimer laser (ArF) photolysis of diatomic and triatomic hydrides produces hydrogen atoms with translational energies in excess of 15000 cm?1 per atom. Subsequent collisions of these “hot” atoms with CO2 and N2O produces vibrationally excited molecules which can be detected by their characteristic infrared emission.  相似文献   

17.
The N-acetyl-4-aminophenoxyl radical, a supposed intermediate of the enzymatic oxidation of acetaminophen in living organisms, was prepared and studied by means of nanosecond laser flash photolysis. A number of important spectral-kinetic parameters of this species were determined, namely, the absorption coefficient at 440 nm ((4.2±0.2)×103 l mol?1cm?1), the quantum yield of acetaminophen photoionization at 266 nm (φ= 0.03), and the rate constants for recombination (2k= (2.4±0.3))×109 l mol?1s?1) and the reaction with the superoxide radical (k= (9±2))×109 l mol?1s?1).  相似文献   

18.
The flash photolysis of HN3 was studied by coordinated time-resolved spectroscopic measurements of HN3 NH(a1Δ), NH(X3Σ), NH(c1π), NH(A3π), NH2, and N3 following flash photolysis of mixtures of HN3 with argon or helium. The primary photolysis is complex, but when the wavelength distribution of the flash is limited to values greater than about 200 nm, the major reactive product is NH(1Δ), or states which quickly decay to NH(1Δ). Disappearance of NH(1Δ) occurs predominantly by the process The process has little, if any, energy of activation, and no detectable dependence on the pressure of inert gas below 1 atm. The rate of formation of NH2 in its ground vibrational state depends on the inert gas pressure in a way that can be accounted for by vibrational relaxation from initial excited vibrational states. The total amount of NH2 is roughly comparable with the amount of HN3 decomposed by primary photolysis. The observed N3 can be attributed to the NH(1Δ) + HN3 reaction, although a smaller amount could also be formed by primary photolysis. The value of k2 is revised upward from the value given in a preliminary report on the basis of a more careful consideration of the effects of Beer's law failure in absorption measurements involving narrow spectral lines.  相似文献   

19.
The process of formation and the subsequent aggregation of silver atoms (Ag0) in nanosized zeolite beta (BEA) are studied by transient absorption spectroscopy. The zeolite nanocrystals are stabilized in aqueous colloidal suspensions with a narrow particle size distribution in the range 30–60 nm. The reduction of silver cations is initiated either by pulse radiolysis of the aqueous suspension or by photoinduced electron transfer using an organic electron donor adsorbed in the zeolite framework. The silver atom in BEA nanosized crystals is found to be stable on the microsecond timescale.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号