首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The synthesis and complete assignment of the 1H NMR spectra of 5-(o-pivaloylaminophenyl)-10,15,20-triphenylporphyrin (PIVTPP) and its two chiral dihydro adducts 3,4-dihydro-(PIVPTPC-I)- and 7,8-dihydr- (PIVPTPC-II)-porphyrins are reported. The use of the zinc complexes of the chlorins as chiral shift reagents with optically active bases is discussed. Comparison of the observed shift differences between the chlorins and the parent porphyrin with those calculated by a ring current model shows that a decrease in the ring current occurs on chlorin formation, and also specific effects occur at the reduced pyrrole ring, presumably reflecting different steric constraints.  相似文献   

2.
The NH tautomerism of five Mg-free chlorophyll a and b derivatives 2-6 was studied utilizing NMR spectroscopy and molecular modeling. The results from the dynamic NMR measurements of the chlorins revealed that substituent effects contribute crucially to the free energy of activation (DeltaG(double dagger)) in the NH tautomeric processes. An intermediate tautomer for the total tautomeric NH exchange in a chlorin was observed for the first time, when the (1)H NMR spectra of chlorin e(6) TME (3) and rhodin g(7) TME (4) (TME = trimethyl ester) were measured at lower temperatures. The lower energy barriers (DeltaG(1)(double dagger)) obtained for the formation of the intermediate tautomers of 3 and 4, assigned to the N(22)-H, N(24)-H trans-tautomer, were 10.8 and 10.6 kcal/mol, respectively. The energy barrier (DeltaG(2)(double dagger) value) for the total tautomeric NH exchange in the five chlorins was found to vary from 13.6 kcal/mol to values higher than 18 kcal/mol. The lowest DeltaG(2)(double dagger) value (13.6 kcal/mol) was obtained for rhodochlorin XV dimethyl ester (2), which was the only chlorophyll derivative lacking the C(15) substituent. In the case of chlorins 4 and 5, the steric crowding around the methoxycarbonylmethyl group at C(15) raised the DeltaG(2)(double dagger) activation free-energy to 17.1 kcal/mol. However, the highest energy barrier with DeltaG(2)(double dagger) > 18 kcal/mol was observed for the NH exchange of pyropheophorbide a methyl ester (6), possessing the macrocycle rigidifying isocyclic ring E. Our results demonstrate that the steric strain, arising either from the steric crowding around the bulky substituent at C(15) or the macrocycle rigidifying isocyclic ring E, slows down the NH tautomeric process. We suggest that deformations in the chlorin skeleton are closely connected to the NH tautomeric exchange and that the exchange occurs by a stepwise proton-transfer mechanism via a hydrogen bridge.  相似文献   

3.
The use of chlorins as photosensitizers or fluorophores in a range of biological applications requires facile provisions for imparting high water solubility. Two free base chlorins have been prepared wherein each chlorin bears a geminal dimethyl group in the reduced ring and a water-solubilizing unit at the chlorin 10-position. In one design (FbC1-PO3H2), the water-solubilizing unit is a 1,5-diphosphonopent-3-yl ("swallowtail") unit, which has previously been used to good effect with porphyrins. In the other design (FbC2-PO3H2), the water-solubilizing unit is a 2,6-bis(phosphonomethoxy)phenyl unit. Two complementary routes were developed for preparing FbC2-PO3H2 that entail introduction of the protected phosphonate moieties either in the Eastern-half precursor to the chlorin or by derivatization of an intact chlorin. Water-solubilization is achieved in the last step of each synthesis upon removal of the phosphonate protecting groups. The chlorins FbC1-PO3H2 and FbC2-PO3H2 are highly water-soluble (>10 mM) as shown by 1H NMR spectroscopy (D2O) and UV-vis absorption spectroscopy. The photophysical properties of the water-soluble chlorins in phosphate-buffered saline solution (pH 7.4) at room temperature were investigated using static and time-resolved absorption and fluorescence spectroscopic techniques. Each chlorin exhibits dominant absorption bands in the blue and the red region (lambda = 398, 626 nm), a modest fluorescence yield (Phi f approximately 0.11), a long singlet excited-state lifetime (tau = 7.5 ns), and a high yield of intersystem crossing to give the triplet state (Phi isc = 0.9). The properties of the water-soluble chlorins in aqueous media are comparable to those of hydrophobic chlorins in toluene. The high aqueous solubility combined with the attractive photophysical properties make these compounds suitable for a wide range of biomedical applications.  相似文献   

4.
The oxidation of bacteriopyropheophorbide with ferric chloride hexahydrate or its anhydrous form produced the ring-D oxidized (ring-B reduced) chlorin in >95% yield. Replacing the five-member isocyclic ring in bacteriopyropheophorbide- a with a fused six-member N-butylimide ring system made no difference in regioselective oxidation, and the corresponding ring-B reduced chlorin was isolated in almost quantitative yield. When the oxidant was replaced by 2,3-dichloro-5,6-dicyano-p-benzoquinone, which is frequently used at the oxidizing stage of the porphyrin synthesis, the ring-B oxidized (ring-D reduced) chlorins were obtained. With both ring-B reduced and ring-D reduced chlorins in hand, their photophysical and electrochemical properties were examined and compared for the first time. The ring-B reduced chlorine 20, with a fused six-member N-butylimide ring, exhibits the most red-shifted absorption band (at lambda(max) = 746 nm), the lowest fluorescence quantum yield (4.5%), and the largest quantum yield of singlet oxygen formation (67%) among the reduced ring-B and ring-D chlorins investigated in this study. Measurements of the one-electron oxidation and reduction potentials show that compound 20 is also the easiest to oxidize among the examined compounds and the third easiest to reduce. In addition, the 1.62 eV HOMO-LUMO gap of 20 is the smallest of the examined compounds, and this agrees with values calculated using the DFT method. Spectroelectrochemical measurements afforded UV-visible absorption spectra for both the radical cations and radical anions of the examined chlorins. The ring-B reduced compound 20, with a fused six-member N-butylimide ring, is regarded as the most promising candidate in this study for photodynamic therapy because it has the longest wavelength absorption and the largest quantum yield of singlet oxygen formation among the compounds investigated.  相似文献   

5.
Two novel synthetic strategies to covalently link a metallocene electron‐donor unit to a chlorin ring are presented. In one approach, pyropheophorbide a is readily converted into its 131‐ferrocenyl dehydro derivative by nucleophilic addition of the ferrocenyl anion to the 131‐carbonyl group. In another approach, the corresponding 131‐pentamethylruthenocenyl derivative is synthesised from 131‐fulvenylchlorin by a facile ligand exchange/deprotonation reaction with the [RuCp*(cod)Cl] (Cp*=pentamethylcyclopentadienyl; cod=1,5‐cyclooctadiene) complex. The resulting metallocene–chlorins exhibit reduced aromaticity, which was unequivocally supported by ring‐current calculations based on the gauge‐including magnetically induced current (GIMIC) method and by calculated nucleus‐independent chemical shift (NICS) values. The negative ring current in the isocyclic E ring suggests the antiaromatic character of this moiety and also clarifies the spontaneous reactivity of the complexes with oxygen. The oxidation products were isolated and their electrochemical and photophysical properties were studied. The ruthenocene derivatives turned out to be stable under light irradiation and showed photoinduced charge transfer with charge‐separation lifetimes of 152–1029 ps.  相似文献   

6.
We describe a two-step conversion of C-alkylated zinc chlorins to zinc oxochlorins wherein the keto group is located in the reduced ring (17-position) of the macrocycle. The transformation proceeds by hydroxylation upon exposure to alumina followed by dehydrogenation with DDQ. The reactions are compatible with ethyne, iodo, ester, trimethylsilyl, and pentafluorophenyl groups. A route to a spirohexyl-substituted chlorin/oxochlorin has also been developed. Representative chlorins and oxochlorins were characterized by static and time-resolved absorption spectroscopy and fluorescence spectroscopy, resonance Raman spectroscopy, and electrochemistry. The fluorescence quantum yields of the zinc oxochlorins (Phi(f) = 0.030-0.047) or free base (Fb) oxochlorins (Phi(f) = 0.13-0.16) are comparable to those of zinc tetraphenylporphyrin (ZnTPP) or free base tetraphenylporphyrin (FbTPP), respectively. The excited-state lifetimes of the zinc oxochlorins (tau = 0.5-0.7 ns) are on average 4-fold lower than that of ZnTPP, and the lifetimes of the Fb oxochlorins (tau = 7.4-8.9 ns) are approximately 40% shorter than that of FbTPP. Time-resolved absorption spectroscopy of a zinc oxochlorin indicates the yield of intersystem crossing is >70%. Resonance Raman spectroscopy of copper oxochlorins show strong resonance enhancement of the keto group upon Soret excitation but not with Q(y)()-band excitation, which is attributed to the location of the keto group in the reduced ring (rather than in the isocyclic ring as occurs in chlorophylls). The one-electron oxidation potential of the zinc oxochlorins is shifted to more positive potentials by approximately 240 mV compared with that of the zinc chlorin. Collectively, the fluorescence yields, excited-state lifetimes, oxidation potentials, and various spectral characteristics of the chlorin and oxochlorin building blocks provide the foundation for studies of photochemical processes in larger architectures based on these chromophores.  相似文献   

7.
以脱镁叶绿酸-a甲酯为起始原料,通过碱性条件下的水解开环、空气氧化和重排反应,分别合成了红紫素-7三甲酯和二氢卟吩-p6三甲酯.然后对其C(3)-乙烯基、20-meso-位、12-位甲基以及尾端酯基进行化学修饰,通过亲电加成、亲电取代、1,3-偶极环加成和氧化重排等反应,完成10种具未见报道的的叶绿素类二氢卟吩衍生物,其化学结构均经UV,IR,1H NMR光谱及元素分析予以表征.  相似文献   

8.
Natural-chlorophyll-related porphyrins, including (2H, Zn, Cu)-protoporphyrin IX (Por-1) and Zn-mesoporphyrin IX (Por-2), and chlorins, including chlorin e? (Chl-1), chlorin e? (Chl-2), and rhodin G? (Chl-3), have been used in dye-sensitized solar cells (DSSCs). For porphyrin sensitizers that have vinyl groups at the β-positions, zinc coordinated Por-1 gives the highest solar-energy-to-electricity conversion efficiency (h) of up to 2.9%. Replacing the vinyl groups of ZnPor-1 with ethyl groups increases the open-circuit voltage (V(oc)) from 0.61 V to 0.66 V, but decreases the short-circuit current (J(sc)) from 7.0 mA·cm?2 to 6.1 mA·cm?2 and the value of h to 2.8%. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations suggest that the higher J(sc) values of Zn-based porphyrin sensitizers result from the favorable electron injection from the LUMO at higher energy levels. In the case of the chlorin sensitizers, the number of carboxyl protons has a large effect on the photovoltaic performance. Chl-2 with two carboxyl protons gives much higher values of J(sc), V(oc), and h than does Chl-1 with three carboxyl protons. Replacing the protons of Chl-1 with sodium ions can substantially improve the photovoltaic performance of Chl-1-based solar cells. Furthermore, the sodium salt of Chl-3 with an aldehyde group at the C7 position shows poorer photovoltaic performance than does the sodium salt of Chl-1 with methyl groups at the C7 position. This is due to the low light-harvesting capability of Chl-3.  相似文献   

9.
A practical and efficient methodology for the formation of C–O bonds on the porphyrin/chlorin periphery was developed. The aroyloxy-substituted porphyrins and chlorins related to chlorophyll-a at the β- and meso-positions, respectively, were conveniently synthesized by the free radical substitution reaction with benzoyl peroxide and its homologs.  相似文献   

10.
13C NMR spectra of ms-tetraphenylchlorins, new aminoalkyl- and hydroxy-pyrroline substituted ms-tetra-phenylchlorins, and ms-tetraphenylisobacteriochlorins are presented and discussed. Significant changes in the chemical shifts of the α-pyrrole, α-pyrroline and meso skeletal carbons are found in chlorins and isobacteriochlorins in comparison to porphyrins. In contrast, the chemical shifts of the β-pyrrole carbons are almost unaffected by the structural modifications in chlorin and isobacteriochlorin. The chemical shifts of the α-pyrrole carbons in the various chlorins and isobacteriochlorins are strongly affected by the substitutents of the pyrroline ring, or by the introduction of an additional pyrroline ring in isobacteriochlorins. The results show that most of the electron density is concentrated in the unreduced part of the molecule, i.e. in the pyrrole rings and, especially, on the α-pyrrole carbons and is transferred or removed through the aromatic pathway by substituents on the pyrroline ring. These observations are supporting evidence that the α-pyrrole, α-pyrroline and meso-carbons are in the aromatic pathway and favour the proposal of a 16 atom dianion as the preferred delocalization pathway in chlorins and isobacteriochlorins.  相似文献   

11.
Understanding the effects of substituents on the spectra of chlorins is essential for a wide variety of applications. Recent developments in synthetic methodology have made possible systematic studies of the properties of the chlorin macrocycle as a function of diverse types and patterns of substituents. In this paper, the spectral, vibrational and excited-state decay characteristics are examined for a set of synthetic chlorins. The chlorins bear substituents at the 5,10,15 (meso) positions or the 3,13 (beta) positions (plus 10-mesityl in a series of compounds) and include 24 zinc chlorins, 18 free base (Fb) analogs and one Fb or zinc oxophorbine. The oxophorbine contains the keto-bearing isocyclic ring present in the natural photosynthetic pigments (e.g. chlorophyll a). The substituents cause no significant perturbation to the structure of the chlorin macrocycle, as evidenced by the vibrational properties investigated using resonance Raman spectroscopy. In contrast, the fluorescence properties are significantly altered due to the electronic effects of substituents. For example, the fluorescence wavelength maximum, quantum yield and lifetime for a zinc chlorin bearing 3,13-diacetyl and 10-mesityl groups (662 nm, 0.28, 6.0 ns) differ substantially from those of the parent unsubstituted chlorin (602 nm, 0.062, 1.7 ns). Each of these properties of the lowest singlet excited state can be progressively stepped between these two extremes by incorporating different substituents. These perturbations are associated with significant changes in the rate constants of the decay pathways of the lowest excited singlet state. In this regard, the zinc chlorins with the red-most fluorescence also have the greatest radiative decay rate constant and are expected to have the fastest nonradiative internal conversion to the ground state. Nonetheless, these complexes have the longest singlet excited-state lifetime. The Fb chlorins bearing the same substituents exhibit similar fluorescence properties. Such combinations of factors render the chlorins suitable for a range of applications that require tunable coverage of the solar spectrum, long-lived excited states and red-region fluorescence.  相似文献   

12.
[reaction: see text] The behavior of porphyrins as dipolarophiles in 1,3-dipolar cycloadditions with azomethine ylides was studied. Depending on the nature of the substituent groups on the porphyrin macrocycles, the reaction can give monoadducts (chlorins) or bisadducts (isobacteriochlorins and bacteriochlorins). When a large excess of azomethine ylide is used, trisadducts can also be obtained. Mixed isobacteriochlorin derivatives were prepared from the reaction of azomethine ylides with the chlorin monoadducts previously obtained via Diels-Alder reactions.  相似文献   

13.
Chlorins provide the basis for plant photosynthesis, but synthetic model systems have generally employed porphyrins as surrogates due to the unavailability of suitable chlorin building blocks. We have adapted a route pioneered by Battersby to gain access to chlorins that bear two meso substituents, a geminal dimethyl group to lock in the chlorin hydrogenation level, and no flanking meso and beta substituents. The synthesis involves convergent joining of an Eastern half and a Western half. A 3,3-dimethyl-2,3-dihydrodipyrrin (Western half) was synthesized in four steps from pyrrole-2-carboxaldehyde. A bromodipyrromethane carbinol (Eastern half) was prepared by sequential acylation and bromination of a 5-substituted dipyrromethane followed by reduction. Chlorin formation is achieved by a two-flask process of acid-catalyzed condensation followed by metal-mediated oxidative cyclization. The latter reaction has heretofore been performed with copper templates. Investigation of conditions for this multistep process led to copper-free conditions (zinc acetate, AgIO(3), and piperidine in toluene at 80 degrees C for 2 h). The zinc chlorin was obtained in yields of approximately 10% and could be easily demetalated to give the corresponding free base chlorin. The synthetic process is compatible with a range of meso substituents (p-tolyl, mesityl, pentafluorophenyl, 4-[2-(trimethylsilyl)ethynyl]phenyl, 4-iodophenyl). Altogether four free base and four zinc chlorins have been prepared. The chlorins exhibit typical absorption spectra, fluorescence spectra, and fluorescence quantum yields. The ease of synthetic access, presence of appropriate substituents, and characteristic spectral features make these types of chlorins well suited for incorporation in synthetic model systems.  相似文献   

14.
在酸碱性条件下对叶绿素-a (1)进行空气氧化反应, 分别得到卟吩衍生物2b~4b; 通过酯交换和去金属镁离子, 将叶绿素-a转化为脱镁叶绿酸-a甲酯(MPa) (5), 其3-位碳碳双键与氯化氢的加成生成卟吩醇(6), 经碱性空气氧化和E-环重排则转化成紫红素-18衍生物7. 选用四氧化锇和高碘酸钠将5氧化成卟吩醛(8), 在丁醇中以丁醇钠作催化剂, 8的氧化和重排反应给出3-甲酰基紫红素-18酯(9)和紫红素-7三甲酯衍生物10. 异构体4的空气氧化和重排反应也生成紫红素-18酯(3), 进一步与2-甲基丁胺进行缩合反应, 得到N-烷基紫红素-18酰亚胺(11a)以及氧化重排产物3-甲酰基-N-烷基紫红素-18酰亚胺(11b). 所得叶绿素衍生物均经UV, IR, 1H NMR及元素分析证明其结构, 并对相应的反应提出可能的反应机理.  相似文献   

15.
In the present study, a biomimetic reaction center model, that is, a molecular triad consisting of a chlorin dimer and an azafulleroid, is synthesized and its photophysical properties are studied in comparison with the corresponding molecular dyad, which consists only of a chlorin monomer and an azafulleroid. As evidenced by 1H NMR, UV/Vis, and fluorescence spectroscopy, the chlorin dimer–azafulleroid folds in nonpolar media into a C2‐symmetric geometry through hydrogen bonding, resulting in appreciable electronic interactions between the chlorins, whereas in polar media the two chlorins diverge from contact. Femtosecond transient absorption spectroscopy studies reveal longer charge‐separated states for the chlorin dimer–azafulleroid; ≈1.6 ns in toluene, compared with the lifetime of ≈0.9 ns for the corresponding chlorin monomer–azafulleroid in toluene. In polar media, for example, benzonitrile, similar charge‐separated states are observed, but the lifetimes are inevitably shorter: 65 and 73 ps for the dimeric and monomeric chlorin–azafulleroids, respectively. Nanosecond transient absorption and singlet oxygen phosphorescence studies corroborate that in toluene, the charge‐separated state decays indirectly via the triplet excited state to the ground state, whereas in benzonitrile, direct recombination to the ground state is observed. Complementary DFT studies suggest two energy‐minima conformations, that is, a folded chlorin dimer–azafulleroid, which is present in nonpolar media, and another conformation in polar media, in which the two hydrophobic chlorins wrap the azafulleroid. Inspection of the frontier molecular orbitals shows that in the folded conformation, the HOMO on each chlorin is equivalent and is shared owing to partial π–π overlap, resulting in delocalization of the conjugated π electrons, whereas the wrapped conformation lacks this stabilization. As such, the longer charge‐separated lifetime for the dimer is rationalized by both the electron donor–acceptor separation distance and the stabilization of the radical cation through delocalization. The chlorin folding seems to change the photophysical properties in a manner similar to that observed in the chlorophyll dimer in natural photosynthetic reaction centers.  相似文献   

16.
A series of zinc 3(1)-hydroxymethyl chlorins 10 a-e and zinc 3(1)-hydroxyethyl chlorins 17 with varied structural features were synthesized by modifying naturally occurring chlorophyll a. Solvent-, temperature-, and concentration-dependent UV/Vis and CD spectroscopic methods as well as microscopic investigations were performed to explore the importance of particular functional groups and steric effects on the self-assembly behavior of these zinc chlorins. Semisynthetic zinc chlorins 10 a-e possess the three functional units relevant for self-assembly found in their natural bacteriochlorophyll (BChl) counterparts, namely, the 3(1)-OH group, a central metal ion, and the 13(1) C==O moiety along the Q(y) axis, and they contain various 17(2)-substituents. Depending on whether the zinc chlorins have 17(2)-hydrophobic or hydrophilic side chains, they self-assemble in nonpolar organic solvents or in aqueous media, respectively. Zinc chlorins possessing at least two long side chains provide soluble self-aggregates that are stable in solution for a prolonged time, thus facilitating elucidation of their properties by optical spectroscopy. The morphology of the zinc chlorin aggregates was elucidated by atomic force microscopy (AFM) studies, revealing well-defined nanoscale rod structures for zinc chlorin 10 b with a height of about 6 nm. It is worth noting that this size is in good accordance with a tubular arrangement of the dyes similar to that observed in their natural BChl counterparts in the light-harvesting chlorosomes of green bacteria. Furthermore, for the epimeric 3(1)-hydroxyethyl zinc chlorins 17 with hydrophobic side chains, the influence of the chirality center at the 3(1)-position on the aggregation behavior was studied in detail by UV/Vis and CD spectroscopy. Unlike zinc chlorins 10, the 3(1)-hydroxyethyl zinc chlorins 17 formed only small oligomers and not higher rod aggregate structures, which can be attributed to the steric effect imposed by the additional methyl group at the 3(1)-position.  相似文献   

17.
A series of chlorins containing a vinyl group on the periphery of the chlorin ring that was attached by linkers of various length, potential monomers for synthesis of polymers containing chlorin via copolymerization, was synthesized from methylpheophorbide a. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 163–166, March–April, 2007.  相似文献   

18.
The Qy absorption band of two chlorophyll derivatives, zinc chlorin e6 (ZnCe6) and zinc pheophorbide a (ZnPheida), in aqueous solution is bathochromically shifted on addition of quinones, e.g., 1,4-benzoquinone (BQ), with a corresponding shift of the fluorescence band. This is due to a complex formation of zinc chlorins induced by BQs and subsequent rearrangement. The time-resolved absorption spectra after laser pulse excitation show triplet quenching of the pigments by BQ and other quinones via electron transfer. The effects of electron transfer to noncovalently bound BQs were also studied with de novo synthesized peptides, into which ZnCe6 and ZnPheida were incorporated as model systems for the primary steps of photosynthetic reaction centers. Whereas the photophysical properties are similar to those of the unbound zinc chlorins, no BQ-mediated complex formation was observed.  相似文献   

19.
The equivalent dipole model of the ring current shift in benzene is shown to be equivalent to that of the well-known two current loop calculation. A network model of the ring current effect in the porphyrin system is described, using the double–dipole approximation, to give a calculation of the ring current shifts in the porphyrin system; this agrees with the observed shifts of protons both in the ring-plane and above it. A simple modification of the model enables treatment of ring current shifts in the chlorin ring. These models may be used to provide, very simply, good estimates of the ring current shifts of the porphyrin and chlorin rings at points above and outside the current loops; the agreement is sufficiently good to allow assignments of peripheral substituents to be made, and to provide information on their orientation. The model is consistent with a peripheral ring current loop in both the free-base porphyrins and their metal complexes. The relationship of these results to calculations in polycyclic aromatics and to protonation shifts in porphyrins is discussed.  相似文献   

20.
Abstract —Photoreduction of protochlorophyll and a series of its derivatives (with gradual simplification of the structure) was studied in ascorbic acid-propanol-pyridine mixtures. Additions were introduced into the solutions to suppress some side processes. Conditions were found for the photoreduction of pigment on the 7,8-linkage, with the formation of corresponding chlorins. Chlorin yields depended on the nature of the metal in the centre of the pigment molecule. The yield of chlorophyll upon photoreduction of protochlorophyll was 30 per cent, and the yields of Zn-derivatives of protochphyll was about 35–80 per cent. Photochemically prepared chlorins were isolated by chromatography. Some differences were discovered between their electronic, infrared, and nuclear magnetic resonance spectra and those of natural chlorins. These differences result from chlorins with a cis arrangement of hydrogen atoms on the 7,8-linkage being selectively formed upon photoreduction, while natural chlorins have the trans arrangement. The mechanism of the photoreduction reaction is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号