首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The 13C chemical shifts of 11 substituted triphenylamines have been determined and the assignment of these resonances made using intensities, 1H and 19F couplings and predictions from bond additivity relationships. 13C chemical shifts at carbons bearing the substituent and at carbons ortho to the substituent correlated reasonably well with the Q parameter. A multiple regression analysis of chemical shifts with the field and resonance parameters of Swain and Lupton and the Q parameter produced significantly better correlations than those obtained when Q was omitted for these positions. 13C chemical shift correlations for carbons meta and para to the substituent were not significantly better than when Q was omitted. Significant correlations were obtained between field and resonance parameters and 13C chemical shifts of C-o and C-p, and C-i, C-o, C-m and C-p of the non-substituent bearing phenyl rings in ortho- and para-substituted phenyldiphenylamines, respectively.  相似文献   

2.
The 13C chemical shifts of 37 pyrazines, including their N-oxides, are reported. Substituent effects of methyl, phenyl and N-oxide groups on the chemical shifts were examined. To comprehend these effects, the chemical shifts were compared with charge densities calculated by the CNDO/2 method and a good correlation was obtained. 13C, 1H coupling constants of some pyrazines were also determined and assigned. These data enable us to assign the 13C NMR spectra of substituted pyrazines and to understand the effects of N-oxidation on the pyrazine nuclei.  相似文献   

3.
The synthesis of 1-azaphenoxathiin N-oxide is described. Total assignment of the 13C-nmr spectrum and the effects of the N-oxide moiety on the chemical shifts and 1H-13C spin couplings constants are described and compared to the parent 1-azaphenoxathiin system. The potential for the use of N-oxidation induced changes in 13C-nmr chemical shifts and 1H-13C coupling constants as an assignment criterion is also discussed.  相似文献   

4.
The 1H and 13C NMR chemical shifts of dibenzo[b, f]pentalene and its 5,10-dimethyl derivative are presented and compared with those of the corresponding dilithium dianions. As probed by the relative 13C NMR chemical shifts, the charge distribution within the dianion system is clearly dependent on the actual ion pair state. This condition is demonstrated by varying the solvent and temperature. The polarization of charge towards the pentalene carbons, i.e. the preferred cation positions, is observed on going to tight ion pair conditions. Further support for this model is gained from 7Li NMR. The limitations of the use of 1H and 13C NMR chemical shifts to measure charge distributions within anion systems are discussed.  相似文献   

5.
A study of several linear and branched alkanes indicates that the temperature dependence of 13C chemical shifts is a complex phenomenon in which several non-additive effects may be operative. The chemical shift temperature coefficients dδ/dT do, however, reveal some systematic trends which could be helpful in the assignments of 13C resonances. An empirical equation is proposed (akin to that of Grant and Paul for 13C chemical shifts) which accurately correlates all the data obtained near ambient temperatures.  相似文献   

6.
The 13C chemical shifts of bicyclo[3.3.1]nonane and of the corresponding 9-hydroxy- and 9-oxo- derivatives are compared with chemical shifts calculated on the basis of stereospecific shift increments. These results as well as the 1H n.m.r. spectrum of the ketone indicate a predominant chair-chair conformation CC. A low temperature 13C n.m.r. study as well as an analysis of the temperature dependence of 13C chemical shifts in bicyclo[3.3.1]nonane furnish a limit for the free energy difference between CC and BC conformations of ΔG ≧ 5,85 kJ mol?1. The distinction between CC, BC and BB provides a test for the applicability of lanthanide-induced 1H and 13C shifts for the assignment of flexible geometries. The typical occurrence of several and/or flat minima in the LIS geometry analysis allows only the exclusion of boat–boat conformations.  相似文献   

7.
The quantitative structure–activity relationship models of 40 phenylhydrazine-substituted tetronic acid derivatives were established between the 1H nuclear magnetic resonance (NMR) and 13C NMR chemical shifts and the antifungal activity against Fusarium graminearum, Botrytis cinerea, Rhizoctonia cerealis, and Colletotrichum capsici. The models were validated by R, R2, RA2, variance inflation factor, F, and P values testing and residual analysis. It was concluded from the models that the 13C NMR chemical shifts of C8, C10, C7, and the 1H NMR chemical shifts of Ha contributed positively to the activity against Fusarium graminearum, Botrytis cinerea, Colletotrichum capsici, and Rhizoctonia cerealis, respectively. The models indicated that decreasing the election cloud density of specific nucleuses in compounds, for example, by the substituting of electron withdrawing groups, would improve the antifungal activity. These models demonstrated the practical application meaning of chemical shifts in the quantitative structure–activity relationship study. Furthermore, a practical guide was provided for further structural optimization of the antifungal phenylhydrazine-substituted tetronic acid derivatives based on the 1H NMR and 13C NMR chemical shifts.  相似文献   

8.
Carbon-13 NMR chemical shifts of several series of aliphatic hydrocarbon derivatives–-substituted methanes, ethanes, isopropanes, n-propanes and n-butanes–-were found to have a linear relationship with σ-electron densities (Qσ) calculated by the method of σ-included ω-HMO. A plot of the 13C NMR chemical shift of a given carbon in a substituted propane versus that of the corresponding carbon in a substituted butane showed a good linearity with a slope of unity. The values of the 13C chemical shifts of the n-butyl derivatives converged rapidly to a constant value as the distance from the substituent increased. Accordingly, the value for the δ-carbon was found to be constant regardless of the substituent. These results show that the 13C NMR chemical shifts of aliphatic hydrocarbon derivatives are mainly dependent on inductive effects. The convergence shown by the experimental results is supported by the calculated results of the Qσ values of the n-butyl derivatives.  相似文献   

9.
77Se and 125Te chemical shifts have been measured for o-halogenated seleno- and telluro-phenetoles. Correlations exist between these parameters and the halogen electronegativities or the 13C chemical shifts, except for the fluorine derivatives. The chalcogen shifts are related to the shifts of various nuclei in halobenzene derivatives, namely 1H in benzenes, 13C in toluenes, 15N in anilines and 19F in fluorobenzenes. 77Se and 125Te chemical shifts are correlated in the o-halogenated seleno- and telluro-phenetoles and in chalcogen analogues of o-methoxy-selenoanisole and -tellurophenetole: Δδ(Te) = 1.60Δδ(Se). The observed gradient is close to values previously reported for other selenides and tellurides, but differs from the value observed in heterocycles. This observation is discussed.  相似文献   

10.
13C NMR chemical shifts and 13C? 31P couplings are reported for ten arylphosphoramidates and five arylphoshorimidates. The para-carbon chemical shifts in the phosphoramidates are interpreted in terms of substantial nitrogen lone pair delocalization into the aromatic ring, a phenomenon which is subject to steric inhibition of resonance. By contrast, in the phosphorimidates the electron release into the phenyl ring is not attenuated by steric congestion. Conformational changes about the aryl? N bond in all compounds have been monitored by vicinal 31P? N? C? 13C couplings.  相似文献   

11.
2-(2-Phenylhydrazono)acetoacetanilide, itsN-methyl derivatives, and model compounds were studied by X-ray photoelectron spectroscopy. The chemical shifts were obtained from the13C NMR spectra. A correlation between the calculated charges, the binding energies on N atoms, and the13C NMR chemical shifts was found. The analysis of the XPS data and the13C NMR chemical shifts led to the conclusion that crystalline 2-(2-phenylhydrazono)acetoacetanilide exists mainly in the oxo hydrazone form. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 488–491, March, 1999.  相似文献   

12.
1H and 13C NMR spectra of 8-hydroxyquinoline (oxine) and its 5-Me, 5-F, 5-Cl, 5-Br and 5-NO2 derivatives have been studied in DMSO-d6 solution. The 1H and 13C chemical shifts and proton–proton, proton–fluorine, carbon–proton and carbon–fluorine coupling constants have been determined. The 1H and 13C chemical shifts have been correlated with the charge densities on the hydrogen and carbon atoms calculated by the CNDO/2 method. The correlation of the 1H and 13C chemical shifts with the total charge densities on the carbon atoms is approximately linear (rH2 = 0.85, rC2 = 0.84). The proton in peri position to the nitro group in 5-NO2-oxine is an exception.  相似文献   

13.
The carbon-13 chemical shifts and coupling constants (J[13C? 199Hg]) have been determined for a series of eleven symmetrically substituted organomercurials. Empirical substituent parameters can be calculated which correlate observed and predicted chemical shifts for dialkylmercurials.  相似文献   

14.
13C n.m.r. chemical shifts of a number of 1,1-disubstituted ethylenes are presented. Moreover, effects of changing temperatures on the 13C n.m.r. chemical shifts of some of these compounds as well as of three normal alkanes are given. These variations in chemical shifts are attributed to varying amounts of sterically induced shifts in the different conformational equilibria. In addition to the well-known 1,4 interaction between two alkyl groups shielding effects on the carbon atoms of the connecting bonds are also proposed. No definite explanation of this effect is presented at this time. It is further shown that no simple correlations exist between 13C n.m.r. chemical shifts and calculated total charge densities at this level. Instead, the experimental results in 1-alkenes are rationalized by assuming a linear dependence of the 13C n.m.r. chemical shifts of C-1 and C-2 via rehybridizations on changes in bond angles for small skeletal deformations caused by steric interactions. These changes in geometries, as well as conformational energies in three 1-alkenes, were calculated by means of VFF calculations. Finally. upfield shifts for both C-2 and C-4 are proposed for those conformations of 1-alkenes in which the C-3? C-4 group interacts with the pz-orbital of C-2.  相似文献   

15.
Two kinds of good linear correlations were found between the chemical shifts of saturated six‐membered azaheterocyclic N‐methylamine N‐oxides and the chemical shifts of the methiodides of their parent amines. One of the correlations occurs between the 17O chemical shift of the N+―O oxygen in the N‐oxides and the 13C chemical shift of the N+―CH3 methyl group analogously situated in the appropriate methiodide (r = 0.9778). This correlation enables unambiguous configuration assignment of the N+―O bond, even if the experimentally observed 17O chemical shift of only one N‐epimer is available, provided the 13C chemical shifts of both N+―CH3 groups in the methiodide are known and assigned; furthermore, it can be used also for the estimation of 17O chemical shifts of the N+―O oxygens in N‐epimeric pairs of N‐oxides, for which observed 17O data hardly become available. The second correlation is observed between the 13C chemical shift of the N+―CH3 methyl group in the N‐oxides and the 13C chemical shift of the N+―CH3 methyl group analogously situated in the appropriate methiodide (r = 0.9785). It can be used for safe configuration assignment of the N+―CH3 group and, indirectly, also of the N+―O bond in an amine N‐oxide, even if no 17O NMR data, and the 13C chemical shift of only one N‐epimer is available. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The 1H and 13C NMR chemical shifts as well as vicinal HH coupling constants of substituted 5-phenyl-2,4-pentadienoic acids Ar? CH?CH? CR?CR? COOH are reported and discussed in connection with the molecular structure. The 13C chemical shift values show an alternation along the chain and can be linearly correlated to the π-electron charge densities as calculated by use of the PPP-method. The effect of para-substituents and solvents upon the 13C chemical shifts can be described in terms of the mutual atom-atom polarizabilities.  相似文献   

17.
Carbon-13 NMR chemical shifts and one-bond carbon–hydrogen coupling constants have been obtained at 15·09 MHz. The trends in the carbon chemical shifts obtained for the pyrazines parallel those of monosubstituted benzenes and 2-substituted pyridines, except for the direct effect of substitution where the pyrazines resemble pyridines not benzenes. The substituent effects on the 13C NMR spectra are generally quite similar to those in the 1H NMR spectra. The 13C NMR spectrum of the tautomeric hydroxypyrazine has been compared with the 13C NMR spectra of 2-, 3- and 4-hydroxypyridines. Hydroxy compounds that can exist as a cyclic amide show a large meta substituent effect on the chemical carbon shift.  相似文献   

18.
13C NMR chemical shifts are assigned for some quaternary morphinan derivatives, including the ‘minor isomer’ of the thebaine N-oxides. In quaternary morphinan alkaloids having an 8.14-double bond, electric field effects cause unusual 13C NMR shifts.  相似文献   

19.
We carried out a series of zeroth‐order regular approximation (ZORA)‐density functional theory (DFT) and ZORA‐time‐dependent (TD)‐DFT calculations for molecular geometries, NMR chemical shifts, nucleus‐independent chemical shifts (NICS), and electronic transition energies of plumbacyclopentadienylidenes stabilized by several Lewis bases, (Ph)2(tBuMe2Si)2C4PbL1L2 (L1, L2 = tetrahydrofuran, Pyridine, N‐heterocyclic carbene), and their model molecules. We mainly discussed the Lewis‐base effect on the aromaticity of these complexes. The NICS was used to examine the aromaticity. The NICS values showed that the aromaticity of these complexes increases when the donation from the Lewis bases to Pb becomes large. This trend seems to be reasonable when the 4n‐Huckel rule is applied to the fractional π‐electron number. The calculated 13C‐ and 207Pb‐NMR chemical shifts and the calculated UV transition energies reasonably reproduced the experimental trends. We found a specific relationship between the 13C‐NMR chemical shifts and the transition energies. As we expected, the relativistic effect was essential to reproduce a trend not only in the 207Pb‐NMR chemical shifts and J[Pb‐C] but also in the 13C‐NMR chemical shifts of carbons adjacent to the lead atom. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
meso-and dl-Diastereomers of a number of α,α′-disubstituted succinic acids have been shown to give different 13C NMR chemical shifts. The results can be satisfactorily explained on the basis of their conformational analyses. A discussion of the observed chemical shifts is presented, and the preferred conformation for each of several compounds is predicted on the basis of these chemical shifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号