首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Diels-Alder adduct of furan and 1-cyanovinyl (1′R)-camphanate was converted into methyl [(tert-butyl)-dimethylsilyl 5-deoxy-2, 3-O-isopropylidene-β-L -ribo-hexofuranosid] uronate ((+)- 4 ). Reduction with diisobutyl-aluminium hydride gave the corresponding aldehyde which was condensed with the ylide derived from triphenyl-(propyl)phosphonium bromide to give (1R, 2S, 3S, 4S)-1-[(tert-butyl)dimethylsilyloxy]tetrahedro-2, 3-(isopropyl-idenedioxy)-4-[(Z)-pent-2′ -enyl]furan ((+)- 7 ). Removal of the silyl protective group gave a mixture of the corresponding furanose that underwent Wittig reaction with the ylide derived from [8-(methoxycarbonyl)-octyl]triphenylphosphonium bromide to yield methyl (11R, 12S, 13S, 9Z, 15Z)-13-hydroxy-11, 12-(isopropylidene-dioxy)octadeca-9, 15-dienoate ((?)- 9 ). Acidic hydrolysis, then saponification afforded (11R, 12S, 13S, 9Z, 15Z)-11, 12, 13-trihydroxyoctadeca-9, 15-dienoic acid ( 1 ).  相似文献   

2.
Asymmetric syntheses of the following 17‐membered macrocyclic spermine alkaloids are presented: (−)‐(S)‐protoverbine (=(8S)‐8‐phenyl‐1,5,9,13‐tetraazacycloheptadecane‐6‐one; 1 ), (+)‐(S)‐protomethine (=(2S)‐2‐phenyl‐1,5,9,14‐tetraazabicyclo[12.3.1]octadecan‐4‐one; 2 ), (−)‐(S)‐buchnerine (=(8S)‐8‐(4‐methoxyphenyl)‐1,5,9,13‐tetraazacycloheptadecane‐6‐one; 8 ), (+)‐(S)‐verbamethine (=(+)‐(2S)‐9‐[(E)‐phenylprop‐2‐enoyl]‐2‐phenyl‐1,5,9,14‐tetraazabicyclo[12.3.1]octadecan‐4‐one; 4 ), (−)‐(S)‐verbacine (=(−)‐(8S)‐1‐[(E)‐phenylprop‐2‐enoyl]‐8‐phenyl‐1,5,9,13‐tetraazacycloheptadecan‐6‐one; 3 ), (−)‐(S)‐verbasikrine (=(−)‐(8S)‐1‐[(E)‐3‐(4‐methoxyphenyl)prop‐2‐enoyl]‐8‐phenyl‐1,5,9,13‐tetraazacycloheptadecan‐6‐one; 26 ), (−)‐(S)‐isoverbasikrine (=(−)‐(8S)‐1‐[(Z)‐3‐(4‐methoxyphenyl)prop‐2‐enoyl]‐8‐phenyl‐1,5,9,13‐tetraazacycloheptadecan‐6‐one; 25 ), (+)‐(S)‐verbamekrine (=(+)‐(2S)‐9‐[(E)‐3‐(4‐methoxyphenyl)prop‐2‐enoyl]‐2‐phenyl‐1,5,9,14‐tetraazabicyclo[12.3.1]octadecan‐4‐one; 23 ), and (+)‐(S)‐isoverbamekrine (=(+)‐(2S)‐9‐[(Z)‐3‐(4‐methoxyphenyl)prop‐2‐enoyl]‐2‐phenyl‐1,5,9,14‐tetraazabicyclo[12.3.1]octadecan‐4‐one; 24 ). Effective methods for 1H‐NMR determination of the enantiomeric purity in which (S)‐2‐hydroxy‐2‐phenylacetic acid and (S)‐2‐acetoxy‐2‐phenylacetic acid are used as shift reagents for 1, 8 , and related macrocyclic alkaloids are described.  相似文献   

3.
The synthesis of 2,2-bis(hydroxymethyl)-4-methyl-5-phenylfuran-3(2H)-one ( 9 ), 5-[(1S,2S,Z)-1,2-(ethylidenedioxy)hex-3-enyl]-2,2-bis(hydroxymethyl)-4-methylfuran-3(2H)-one ( 24 ), and 5-[(1S,2S,Z)-1,2-(ethylidenedioxy)hex-3-enyl]-2-(hydroxymethyl)-4-methylfuran-3(2H)-one ( 28 ), which represent more advanced, suitably functionalized intermediates for the synthesis of pseurotin A ( 1 ), a secondary metabolite of Pseudeurotium ovalis STOLK , is described.  相似文献   

4.
The preparation and the CD spectra of optically pure (+)-trans-μ-[(1R,4S,5S,6R,7R,8S)-C,5,6,C -η : C,7,8,C-η-(5,6,7,8-tetramethylidene-2-bicyclo [2.2.2]octanone)]bis(tricarbonyliron) ((+)- 7 ) and (+)-tricarbonyl[(1S,4S,5S,6R)-C-5,6,C-η-(5,6,7,8,-tetramethylidene-2-bicyclo[2.2.2]octanone)]iron ((+)- 8 ), and of its 3-deuterated derivatives (+)-trans-μ-[(1R,3R,4S,5S,6R,7R,8S)-C,5,6,C-η : C,7,8,C-η-5,6,7,8-tetramethylidene(3-D)-2-bicyclo[2.2.2]-(octanone)]bis(tricarbonyliron) ((+)- 11 ) and (+)-tricarbonyl[(1S,3R,4S,5S,6R)-C-5,6,C- η-(5,6,7,8-tetramethylidene(3-D)-2-bicyclo[2.2.2]octanone)]iron ((+)- 12 ) are reported. The chirality in (+)- 7 and (+)- 8 is due to the Fe(CO)3 moieties uniquely. The signs of the Cotton effects observed for (+)- 7 and (+)- 8 obey the octant rule (ketone n→π*CO transition). Optically pure (?)-3R-5,6,7,8-tetramethylidene(3-D)-2-bicyclo[2.2.2]octanone ((?)- 10 ) was prepared. Its CD spectrum showed an ‘anti-octant’ behaviour for the ketone n→π*CO transition of the deuterium substituent. The CD spectra of the alcoholic derivatives (?)-trans-μ-[(1R,2R,4S, 5S,6R,7R,8S)-C,5,6,C-η : C,7,8,C- η-(5,6,7,8-tetramethylidene-2-bicyclo[2.2.2]octanol)]bis(tricarbonyliron) ((?)- 2 ) and (?)-tricarbonyl- [(1S,2R,4S,5S,6R)- C,5,6,C- η-(5,6,7,8-tetramethylidene-2-bicyclo[2.2.2]octanol)]iron ((?)- 3 ) and of the 3-denterated derivatives (?)- 5 and (?)- 6 are also reported. The CD spectra of the complexes (?)- 2 , (?)- 3 , (+)- 7 , and (+)- 8 were solvent and temperature dependent. The ‘endo’-configuration of the Fe(CO)3 moiety in (±)- 8 was established by single-crystal X-ray diffraction.  相似文献   

5.
The sponges Raspailia pumila and ramosa (Demospongiae, Tetractinomorpha, Axinellida) from the North-East Atlantic are shown to contain a series of novel long-chain enol ethers of glycerol where the enol ether C?C bond is conjugated, in sequence, to both an acetylenic and an olefinic bond. Polar extracts give raspailynes hydroxylated at their (1Z5Z)-1,5-alkadien-3-ynyl chain, like raspailyne Al ( = (+)-(S)-3-[((1Z,5Z)-16-hydroxy-hexadeca-1,5-dien-3-ynyl)oxy]-1,2-propanediol; (+ 2 ) and isoraspailyne A ( = (+)-3-[((1Z,5Z)-17-hydroxyocta-deca-1,5-dien-3-ynyl)oxy]-1,2-[propanediol; (+)- 3 ). Less polar extracts give 3 different types of raspailynes not hydroxylated at the chain. Raspailynes of the first type have either the (1Z,5Z)-configuration in a linear chain such as raspailyne B2 (( = (?)-(s)-3-[((1Z,5Z)-trideca-1,5-dien-3-ynyl)oxy]-1,2-propanediol; (?)-4), raspailyne Bl ( = (?)-3-[((1Z,5Z)-tetradeca-1,5-dien-3-ynyl)oxy]-1,2-propanediol;(?)- 5 ), and raspailyne B ( = 3-[((1Z,5Z)-pentadeca-1,5-dien-3-ynyl)oxy]-1,2-propanediol; 6 ) or the (1Z,5Z)-pentadeca-1,5-dien-3-ynyl)oxy]-1,2-propanediol; 6 )or the (1Z,5Z)-configuration in a chain ending with an isopropyl group, like isoraspailyne Bl ( = 3-[((1Z,5Z)-12-methyltrideca-1,5-dien-3-ynyl)oxy]-1,2-propanediol; 7 ) and isoraspailyne B ( = 3-[((1Z,5Z)-13-methyltetradeca-1,5-dien-3-ynyl)oxy]-1,2-propanediol; 8 ). Raspailynes of the second type have the (1Z,5E)-configuration, like isoraspailyne Bla ( =3-[((1Z,5E)-tetradeca-1,5-dien-3-ynyl)oxy]-1,2-propanediol; 9 ) and isoraspailyne Ba ( = 3-[((1Z,5E)-13-methyltetradeca-1,5-dien-3-ynyl)oxy]-1,2-propanediol; 10 ). Raspailynes of the third type have the (1E,5Z)-configuration, like isoraspailyne Blb ( = 3-[((1E,5Z)-tetradeca-1,5-dien-3-ynyl)oxy]-1,2,-propanediol; 11 ). The (S)-configuration for (+)- 1 ,((+)- 2 , and (?)- 4 is derived from chemical correlations.  相似文献   

6.
The absolute configurations of acetylated bretonin A (= (+}-( R )-1-[(acetoxy)methyl]-2-{[(4E,6E,8E)-dodeca-4,6,8-trienyl]oxy}ethyl 4-acetoxybenzoate; (?)- 1b ) and isobretonin A (= (+)-(S)-3-{[(4E,6E,8E)-do-deca-4,6,8-trienyl]oxy}-2-hydroxypropyl 4-hydroxybenzoate; (+)-2), previously isolated from an undetermined sponge of the North Brittany sea, were established by comparison with synthetic (+)- lb and (+)- 2 , obtained from the condensation of commerical (?)-(R)-2,2-dimethyl-1,3-dioxolan-4-yl p-toluenesuifonate ((?)-(R)- 15 ) with a mixture of (4E,6E,8E)- ( 14e ) and (4E,6Z,8E)-dodeca-4,6,8-trien-1-ol ( 14z ). This also allowed confirming the structure and configuration of bretonin B (= (S)-2-{[(4E,6Z,8E)-dodeca-4,6,8-trienyl]oxy}-1-(hydroxy-methyl)ethyl 4-hydroxybenzoate; 3 ) which was also isolated from the same sponge, albeit in a too small amount for a complete study. As concerns the glyceryl ethers precursors of the bretonins, co-occurrence of the usual (S)-con-figuration (from 1a ) with the unusual (R)-configuration (from (+)- 2 )) poses intriguing biogenetic problems.  相似文献   

7.
Antioxidant activity guided fractionation of extracts of the aerial parts of the title plant and HPLC separation yielded a series of oxygenated long-chain alkylcatechols. Their structures were inferred by spectroscopic methods and chemical transformations to be the novel 4-[(2S,4R,6S)-4-(acetyloxy)tetrahydro-6-pentyl-2H-pyran-2-yl]benzene-1,2diol ( 1a ), 4-[(2S,4R6S)-tetrahydro-4-hydroxy-6-pentyl-2H-pyran-2-yl]benzene-1,2-diol ( 1b ), 4-[(3S,5S)-5-(acetyloxy)-3-hydroxydecyl]benzene-1,2-diol (2a), 4-[(3S,5S)3-(acetyloxy)-5-hydroxydecyl]benzene-1,2-diol ( 2b ), (3S,13Z)-1-(3,4-dihydroxyphenyl)-3-hydroxydocos-13-en-5-one ( 3a ), (Z)-1-(3,4-dihydroxyphenyl)docos-13-en-5-one ( 4 ), besides the known l-(3,4-dihydroxyphenyl)icosan-5-one ( 5 ). The absolute configurations of the optically active compounds which are structurally related to the [n]-gingerols ( 6 ) and -diols ( 7 ) were established by the high-field 1H-NMR application of Mosher's method. All compounds are in vitro potent antioxidants, inhibiting the Fe2+-catalysed autoxidation of linoleic acid in the same order of magnitude as the commercial antioxidant 2,6-di(tert-butyl)-4-methylphenol (BHT). The dose-dependent inhibitory effects on soybean-lipoxygenase are in the μmol range, that of the most effective compound ( 3a ) in the nmol range, hence being significantly more potent than the Known anti-inflammatory and analgesic drugs indomethacin and nordihydroguaiaretic acid.  相似文献   

8.
Wittig olefination of (2S,3R,5S,6R)‐5‐(acetyloxy)‐tetrahydro‐6‐[(methoxymethoxy)methyl]‐3‐(phenylthio)‐ 2H‐pyran‐2‐acetaldehyde ((+)‐ 10 ) with {2‐[(2S,3R,4R,5R,6S)‐tetrahydro‐3,4,5‐tris(methoxymethoxy)‐6‐methyl‐ 2H‐pyran‐2‐yl]ethyl}triphenylphosphonium iodide ((?)‐ 11 ) gave a (Z)‐alkene derivative (+)‐ 12 that was converted into (αR,2R,3S,4R,5R,6S)‐tetrahydro‐α,3‐dihydroxy‐2‐(hydroxymethyl)‐5‐(phenylthio)‐6‐{(2Z)‐4‐[(2S,3S,4R,5S,6S)‐tetrahydro‐3,4,5‐trihydroxy‐6‐methyl‐2H‐pyran‐2‐yl]but‐2‐enyl}2H‐pyran‐4‐acetic acid ( 8 ), (αR,2R,3S,4R,6S)‐tetrahydro‐α,3‐dihydroxy‐2‐(hydroxymethyl)‐6‐{4‐[(2S,3S,4R,5S,6S)‐tetrahydro‐3,4,5‐trihydroxy‐6‐methyl‐2H‐pyran‐2‐yl]butyl}‐2H‐pyran‐4‐acetic acid ( 9 ), and simpler analogues without the hydroxyacetic side chain such as (2S,3S,4R,5S,6S)‐tetrahydro‐6‐methyl‐2‐{(2Z)‐4‐[(2S,3R,5S,6R)‐tetrahydro‐5‐hydroxy‐6‐(hydroxymethyl)‐3‐(phenylthio)‐2H‐pyran‐2‐yl]but‐2‐enyl}‐2H‐pyran‐3,4,5‐triol ( 30 ), (2S,3S,4R,5S,6S)‐tetrahydro‐6‐methyl‐2‐{[(2S,5S,6R)‐tetrahydro‐5‐hydroxy‐6‐(hydroxymethyl)‐2H‐pyran‐2‐yl]butyl}‐2H‐pyran‐3,4,5‐ triol ((?)‐ 41 ) and (2S,3S,4R,5S,6S)‐tetrahydro‐6‐methyl‐2‐{(2Z/E))‐4‐[(2R,5S,6R)‐tetrahydro‐5‐hydroxy‐6‐(hydroxymethyl)‐2H‐pyran‐2‐yl]but‐2‐enyl}‐2H‐pyran‐3,4,5‐triol ( 43 ). The key intermediates (+)‐ 10 and (?)‐ 11 were derived from isolevoglucosenone and from L ‐fucose, respectively. The following IC50 values were measured in a ELISA test for the affinities of sialyl Lewis x tetrasaccharide, 8, 9, 30 , (?)‐ 41 , and 43 toward P‐selectin: 0.7, 2.5–2.8, 7.3–8.0, 5.3–5.9, 5.0–5.2, and 3.4–4.1 mM , respectively.  相似文献   

9.
The cross‐aldolization of (−)‐(1S,4R,5R,6R)‐6‐endo‐chloro‐5‐exo‐(phenylseleno)‐7‐oxabicyclo[2.2.1]heptan‐2‐one ((−)‐ 25 ) and of (+)‐(3aR,4aR,7aR,7bS)‐ ((+)‐ 26 ) and (−)‐(3aS,4aS,7aS,7bR)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]furo[2,3‐d]isoxazole‐3‐carbaldehyde ((−)‐ 26 ) was studied for the lithium enolate of (−)‐ 25 and for its trimethylsilyl ether (−)‐ 31 under Mukaiyama's conditions (Scheme 2). Protocols were found for highly diastereoselective condensation giving the four possible aldols (+)‐ 27 (`anti'), (+)‐ 28 (`syn'), 29 (`anti'), and (−)‐ 30 (`syn') resulting from the exclusive exo‐face reaction of the bicyclic lithium enolate of (−)‐ 25 and bicyclic silyl ether (−)‐ 31 . Steric factors can explain the selectivities observed. Aldols (+)‐ 27 , (+)‐ 28 , 29 , and (−)‐ 30 were converted stereoselectively to (+)‐1,4‐anhydro‐3‐{(S)‐[(tert‐butyl)dimethylsilyloxy][(3aR,4aR,7aR,7bS)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]‐furo[2,3‐d]isoxazol‐3‐yl]methyl}‐3‐deoxy‐2,6‐di‐O‐(methoxymethyl)‐α‐D ‐galactopyranose ((+)‐ 62 ), its epimer at the exocyclic position (+)‐ 70 , (−)‐1,4‐anhydro‐3‐{(S)‐[(tert‐butyl)dimethylsilyloxy][(3aS,4aS,7aS,7bR)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]furo[2,3‐d]isoxazol‐3‐yl]methyl}‐3‐deoxy‐2,6‐di‐O‐(methoxymethyl)‐α‐D ‐galactopyranose ((−)‐ 77 ), and its epimer at the exocyclic position (+)‐ 84 , respectively (Schemes 3 and 5). Compounds (+)‐ 62 , (−)‐ 77 , and (+)‐ 84 were transformed to (1R,2R,3S,7R,8S,9S,9aS)‐1,3,4,6,7,8,9,9a‐octahydro‐8‐[(1R,2R)‐1,2,3‐trihydroxypropyl]‐2H‐quinolizine‐1,2,3,7,9‐pentol ( 21 ), its (1S,2S,3R,7R,8S,9S,9aR) stereoisomer (−)‐ 22 , and to its (1S,2S,3R,7R,8S,9R,9aR) stereoisomer (+)‐ 23 , respectively (Schemes 6 and 7). The polyhydroxylated quinolizidines (−)‐ 22 and (+)‐ 23 adopt `trans‐azadecalin' structures with chair/chair conformations in which H−C(9a) occupies an axial position anti‐periplanar to the amine lone electron pair. Quinolizidines 21 , (−)‐ 22 , and (+)‐ 23 were tested for their inhibitory activities toward 25 commercially available glycohydrolases. Compound 21 is a weak inhibitor of β‐galactosidase from jack bean, of amyloglucosidase from Aspergillus niger, and of β‐glucosidase from Caldocellum saccharolyticum. Stereoisomers (−)‐ 22 and (+)‐ 23 are weak but more selective inhibitors of β‐galactosidase from jack bean.  相似文献   

10.
The synthesis and catalytic properties of a new type of enantioselective phase-transfer catalysts, incorporating both the quinuclidinemethanol fragment of Cinchona alkaloids and a 1,1′-binaphthalene moiety, are described. Catalyst (+)-(aS,3R,4S,8R,9S)- 4 with the quinuclidine fragment attached to C(7′) in the major groove of the 1,1′-binaphthalene residue was predicted by computer modeling to be an efficient enantioselective catalyst for the unsymmetric alkylation of 6,7-dichloro-5-methoxy-2-phenylindanone ( 1 ; Scheme 1, Fig. 1). Its synthesis involved the selective oxidative cross-coupling of two differently substituted naphthalen-2-ols to afford the asymmetrically substituted 1,1′-binaphthalene derivative (±)- 17 in high yield (Scheme 3). Chromatographic optical resolution via formation of diastereoisomeric camphorsulfonyl esters and functional-group manipulation gave access to the 7-bromo-1,1′-binaphthalene derivative (−)-(aS)- 11 (Scheme 4). Nucleophilic addition of lithiated (−)-(aS)- 11 to the quinuclidine Weinreb amide (+)-(3R,4S,8R)- 8 afforded the two ketones (aS,3R,4S,8R)- 27 and (aS,3R,4S,8S)- 28 as an inseparable mixture of diastereoisomers (Scheme 6). Stereoselective reduction of this mixture with DIBAL-H (diisobutylaluminum hydride; preferred formation of the C(8)−C(9) erythro-pair of diastereoisomers with 18% de) or with NaBH4 (preferred formation of the threo-pair of diastereoisomers with 50% de) afforded the four separable diastereoisomers (+)-(aS,3R,4S,8S,9S)- 29 , (+)-(aS,3R,4S,8R,9R)- 30 , (−)-(aS,3R,4S,8S,9R)- 31 , and (+)-(aS,3R,4S,8R,9S)- 32 (Scheme 6). A detailed conformational analysis, combining 1H-NMR spectroscopy and molecular-mechanics computations, revealed that the four diastereoisomers displayed distinctly different conformational preferences (Figs. 2 and 3). These novel Cinchona-alkaloid analogs were quaternized to give (+)-(aS,3R,4S,8R,9S)- 4 , (+)-(aS,3R,4S,8S,9S)- 5 , (+)-(aS,3R,4S,8R,9R)- 6 , and (−)-(aS,3R,4S,8S,9R)- 7 (Scheme 7) which were tested as phase-transfer agents in the asymmetric allylation of phenylindanone 1 . Without any optimization work, (+)-(aS,3R,4S,8R,9S)- 4 was found to catalyze the allylation of 1 yielding the predicted enantiomer (+)-(S)- 3b in 32% ee. The three diastereoisomeric catalysts (+)- 5 , (+)- 6 , and (−)- 7 gave access to lower enantioselectivities (6 to 22% ee's), which could be rationalized by computer modeling (Fig. 4).  相似文献   

11.
The reaction of 1‐(trimethylsilyloxy)cyclopentene ( 9 ) with (±)‐1,3,5‐triisopropyl‐2‐(1‐(RS)‐{[(1E)‐2‐methylpenta‐1,3‐dienyl]oxy}ethyl)benzene ((±)‐ 4a ) in SO2/CH2Cl2 containing (CF3SO2)2NH, followed by treatment with Bu4NF and MeI gave a 3.0 : 1 mixture of (±)‐(2RS)‐2{(1RS,2Z,4SR)‐2‐methyl‐4‐(methylsulfonyl)‐1‐[(RS)‐1‐(2,4,6‐triisopropylphenyl)ethoxy]pent‐2‐en‐1‐yl}cyclopentanone ((±)‐ 10 ) and (±)‐(2RS)‐2‐{(1RS,2Z)‐2‐methyl‐4‐[(SR)‐methylsulfonyl]‐1‐[(SR)‐1‐(2,4,6‐triisopropylphenyl)ethoxy]pent‐2‐en‐1‐yl}cyclopentanone ((±)‐ 11 ). Similarly, enantiomerically pure dienyl ether (−)‐(1S)‐ 4a reacted with 1‐(trimethylsilyloxy)cyclohexene ( 12 ) to give a 14.1 : 1 mixture of (−)‐(2S)‐2‐{(1S,2Z,4R)‐2‐methyl‐4‐(methylsulfonyl)‐1‐[(S)‐1‐(2,4,6‐triisopropylphenyl)ethoxy]pent‐2‐enyl}cyclohexanone ((−)‐ 13a ) and its diastereoisomer 14a with (1S,2R,4R) or (1R,2S,4S) configuration. Structures of (±)‐ 10 , (±)‐ 11 , and (−)‐ 13a were established by single‐crystal X‐ray crystallography. Poor diastereoselectivities were observed with the (E,E)‐2‐methylpenta‐1,3‐diene‐1‐ylethers (+)‐ 4b and (−)‐ 4c bearing ( 1 S )‐1‐phenylethyl and (1S)‐1‐(pentafluorophenyl)ethyl groups instead of the Greene's auxiliary ((1S)‐(2,4,6‐triisopropylphenyl)ethyl group). The results demonstrate that high α/βsyn and asymmetric induction (due to the chiral auxiliary) can be obtained in the four‐component syntheses of the β‐alkoxy ketones. The method generates enantiomerically pure polyfunctional methyl sulfones bearing three chiral centers on C‐atoms and one (Z)‐alkene moiety.  相似文献   

12.
(Z)-1,6-Anhydro-3-deoxy-4-methylsulfanyl-3-[(methylsulfanyl)methylene]-β-D-erythro-hexopyranos-2-ulose (1) reacted with diethyl malonate, 1,3-diketones, N-aryl-3-oxobutyramides and dialkyl 3-oxoglutarate, respectively, in the presence of potassium carbonate and crown ether to yield diethyl 2-(1,6-anhydro-4-methylsulfanyl—D-arabino-hex-2-ulopyranos-3-ylmethylene) malonate (2), 1-{(1R,2S,8S,9R)-2-hydroxy-4-methyl-8-methylthio-3,11,12- trioxatricyclo7.2.1.02,7dodeca-4,6-dien-5-yl} ethanone (3), (1R,2S,12S,13R)-2-hydroxy-12-methylthio-3,15,16-trioxatetracyclo[11.2.1. 02,11. 04,9] hexadeca- 4(9),10-dien-8-one (4), (1R,8S,9R)-5-acetyl-3-aryl-8-methylthio-11,12-dioxa- 3-azatricyclo-[7.2.1.02,7]dodeca-2(7),5-dien-4-ones (5,6) and dialkyl (1R,8S,-9R)-4-hydroxy-8-methylthio-11,12-dioxatricyclo[7.2.1.02,7]dodeca-2(7),3,5-triene-3,5-dicarboxylates (7,8), respectively.  相似文献   

13.
Viridiene ((+)- 6 ; (+)-(3R,4S)-3-((1Z)-1,3-butadienyl)-4-vinylcyclopentene) and aucantene ((+)- 18 ; (+)-(4R,5R)-4-((1E)-1-propenyl)-5-vinylcyclohexene) are constituents of the pheromone bouquets of several brown algae species. Key synthons to the title compounds are optically active γ-lactones with known or experimentally determined absolute configurations. Horse liver alcohol dehydrogenase, which catalyses the oxidation of meso- and racemic non-meso diols to chiral lactones, and pig-liver esterase, which catalyzes the saponification of meso-diesters to chiral half-esters, were utilized for the asymmetric synthesis of such precursors. The racemic non-meso diol rac- 1 is converted to the two stereoisomeric γ-lactones (+)- 2 and (+)- 3 which are readily separated. meso-Diol 12 is oxidized to the chiral γ-lactone (?)- 11 . Its enantiomer (+)- 11 is obtained by enantioselective saponification of the meso-diester 9 with pig-liver esterase. Appropriately designed syntheses lead from these chiral intermediates to both enantiomers (+)- and (?)- 6 of viridiene and (+)- and (?)- 18 of aucantene. In addition, kinetically controlled reduction of the racemic aldehydes rac- 5a and rac- 15 with horse liver alcohol dehydrogenase offers a convenient alternative to the enantioselective preparation of the enantiomers of the two hydrocarbons 6 and 18 . Chromatography of 6 on triacetylated cellulose as a stationary chiral phase confirms the enantiospecificity of the synthetic routes designed.  相似文献   

14.
Aervalanata possesses various useful medicinal and pharmaceutical activities. Phytochemical investigation of the plant has now led to the isolation of a new 2α,3α,15,16,19-pentahydroxy pimar-8(14)-ene diterpenoid (1) together with 12 other known compounds identified as β-sitosterol (2), β-sitosterol-3-O-β-D-glucoside (3), canthin-6-one (4), 10-hydroxycanthin-6-one (aervine, 5), 10-methoxycanthin-6-one (methylaervine, 6), β-carboline-1-propionic acid (7), 1-O-β-D-glucopyranosyl-(2S,3R,8E)-2-[(2′R)-2-hydroxylpalmitoylamino]-8-octadecene-1,3-diol (8), 1-O-(β-D-glucopyranosyl)-(2S,3S,4R,8Z)-2-[(2′R)-2′-hydroxytetracosanoylamino]-8(Z)-octadene-1,3,4-triol (9), (2S,3S,4R,10E)-2-[(2′R)-2′-hydroxytetracosanoylamino]-10-octadecene-1,3,4-triol (10), 6′-O-(4″-hydroxy-trans-cinnamoyl)-kaempferol-3-O-β-D-glucopyranoside (tribuloside, 11), 3-cinnamoyltribuloside (12) and sulfonoquinovosyldiacylglyceride (13). Among these, six compounds (813) are reported for the first time from this plant. Cytotoxicity evaluation of the compounds against five cancer cell lines (CHO, HepG2, HeLa, A-431 and MCF-7) shows promising IC50 values for compounds 4, 6 and 12.  相似文献   

15.
Methyl 2-O-benzyl-3,6-thioanhydro-α-D-mannopyranoside ( 9 ) was obtained in eight steps from the commercially available methyl α-D-glucopyranoside. Compound 9 was transformed into (2R,3R,4S)-3-benzyloxy-4-hydroxy-2-[(R)-1-benzyloxy-4-hydroxybutyl]thiolane ( 14 ) by acid hydrolysis of its 2,4-di-O-benzyl derivative 10 followed by reaction of the not isolated 2,4-di-O-benzyl-3,6-thioanhydro-D-mannose ( 11 ) with ethoxycarbonylmethylenetriphenylphosphorane to give an = 1:1 E/Z mixture of the corresponding α,β-unsaturated ester ( 12 ). Finally, catalytic hydrogenation of 12 to ethyl (R)-4-benzyloxy-4-[(2′R)3′R,4′S)-3′-benzyloxy-4′-hydroxythiolan-2′-yl]butanoate ( 13 ) and subsequent reduction with lithium aluminum hydride gave the title compound 14 .  相似文献   

16.
Tetrahydrobenzo[a]pyrrolizidines (= octahydro-1H-pyrrolo[2,1-a]isoindoles) and tetrahydrobenzo[a]indo-lizidines, (= decahydropyrido[2,1-a]isoindoles) were prepared stereoselectively in four steps through an amineinduced ring-opening of 3-bromo-2,5-dimethylthiophene 1,1-dioxide ( 1 ) with L -prolinol ( 9 ), piperidine-2-methanol ( 10 ), and piperidine-2-ethanol ( 11 ), yielding the dienes (2S)-1-[(2E,4Z)-4-bromohexa-2,4-dienyl]pyrrolidine-2-methanol ( 12 ), 1-[(2E,4Z)-4-bromohexa-2,4-dienyl]piperidine-2-methanol ( 13 ), and 1-[(2E,4Z)-4-bromo-hexa-2,4-dienyl]piperidine-2-ethanol ( 14 ; Scheme2), which, after conversion into their α,β-unsaturated esters, cyclized in a TiCl4-catalyzed intramolecular Diets-Alder reaction (Scheme3). A discussion on the mechanism of the ring opening reaction including semiempirical and ab initio calculations is also presented.  相似文献   

17.
The endocyclic double bond C(2), C(3) in 5,6-dimethylidene-7-oxabicyclo[2.2.1]-hept-2-ene ( 1 ) can he coordinated selectively on its exo-face before complexation of the exocyclic s-cis-butadiene moiety. Irradiation of Ru3(CO)12 or Os3(CO)12 in the presence of 1 gave tetracarbonyl [(1R,2R, 3S,4S)-2,3-η-(5,6-dimethylidene-7-oxabicyclo[2.2.1]-hept-2-ene)]ruthenium ( 6 ) or -osmium ( 8 ). Similarly, irradiation of Cr(CO)6 or W(CO)6 in the presence of 1 gave pentacarbonyl[(1R, 2R, 3S,4S)-2,3-η-(5,6-dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene)]chromium (10) or -tungsten (11) . Irradiation of complexes 6 and 11 in the presence of 1 led to further CO substitution giving bed-tricarbonyl-ae-bis[(1R,2R,3S,4S)-2,3-η-(5,6-dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene)]ruthenium ( 7 ) and trans-tetracarbonyl[(1R,2R,3S,4S)-2,3-η-(5,6-dimethylidene-7-oxabicyclo-[2.2.1]hept-2-ene)]tungsten (12) , respectively. The diosmacyclobutane derivative cis-m?-[(1R,3R,3S,4S)-(5,6-dimethylidene-7-oxabicyclo[2.2.1]hepta-2,3-diyl)]bis(tetracarbonyl-osmium) (Os-Os) (9) wa also obtained. The Diels-Alder reactivity of the exocyclic s-cis-butadiene moiety in complexs 7 and 8 was found to be significantly higher than that of the free triene 1 .  相似文献   

18.
A phytochemical investigation of the roots of Symplocos caudata Wall (Symplocaceae) resulted in the isolation and characterization of two optical isomers of a neolignan glycoside (1) and a new cerebroside (2). Their structures were elucidated as (7R,8S)-erythro-7,9,9'-trihydroxy-3,3',5'-trimethoxy-8-O-4'-neolignan-4-O-β-D-glucopyranoside, (7S,8R)-erythro-7,9,9'-trihydroxy-3,3',5'-trimethoxy-8-O-4'-neolignan-4-O-β-Dglucopyranoside (1), and 1-O-β-D-glucopyranosyl-(2S,3S,4R,8Z,12E)-2-N-[(2'R)-2'-hydroxyheptacosanoyl]-8,12-docosadiene-1,3,4-triol (2), respectively, on the basis of spectroscopic data (1D and 2D NMR, MS and CD).  相似文献   

19.
Extracts from the seeds of Annona muricata yielded three new Annonaceous acetogenins: muricatetrocin A (= (5S)-3-{(2R)-2-hydroxy-9-{(2R,5S)-tetrahydro-5-[(1S,4S,5S)-1,4,5-trihydroxyheptadecyl]furan-2-yl}nonyl}-5-methylfuran-2(5H)-one; 1 ), muricatetrocin B (= (5S)-{(2R)-2-hydroxy-9-{(2S,5S)-tetrahydro-5-[(1S,4S,5S)-1,4,5-trihydroxyheptadecyl]furan-2-yl}nonyl}-5-methylfuran-2(5H)-one; 2 ), and gigantetrocin B (= (5S)-3-{(2R)-2-hydroxy-7-{(2S,5S)-tetrahydro-5-[(1S,4R,5R)-1,4,5-trihydroxynonadecyl]furan-2-yl}heptyl}-5-methyl-furan-2(5H)-one; 3 ). Their C-skeletons were deduced by mass spectrometry. Configurations were determined by 1H-NMR of ketal derivatives and 2D-NMR experiments utilizing Mosher esters. A previously described compound, gigantetrocin A (= (5S)-3-{(2R)-2-hydroxy-7-{(2S,5S)-tetrahydro-5-[(1S,4S,5S)-1,4,5-trihydroxynonadecyl]furan-2-yl}heptyl}-5-methylfuran-2-(5H)one; 4 ), was also isolated and is new to this species. Compounds 1–4 were all selectively cytotoxic for the HT-29 human colon-tumor cell line with potencies at least 10 times that of adriamycin.  相似文献   

20.
Mitsunobu displacement of (−)-(1S,4R,5S,6S)-4,5,6-tris{[(tert-butyl)dimethylsilyl]oxy}cyclohex-2-en-1-ol ((−)- 12 ; a (−)-conduritol-F derivative) with 4-ethyl-7-hydroxy-2H-1-benzopyran-2-one ( 16 ) provided a 5a-carba-β-D -pyranoside (+)- 17 that was converted into (+)-4-ethyl-7-[(1′R,4′R,5′S,6′R)-4′,5′,6′-trihydroxycyclohex-2′-en-1′-yloxy]-2H-1-benzopyran-2-one ((+)- 5 ) and (+)-4-ethyl-7-[(1′R,2′R,3′S,4′R)-2′,3′,4′-trihydroxycyclohexyloxy]-2H-1-benzopyran-2-one ((+)- 6 ). The 5a-carba-β-D -xyloside (+)- 6 was an orally active antithrombotic agent in the rat (venous Wessler's test), but less active than racemic carba-β-xylosides (±)- 5 and (±)- 6 . The 5a-carba-β-L -xyloside (−)- 6 was derived from the enantiomer (+)- 12 and found to be at least 4 times as active as (+)- 6 . (+)-4-Cyanophenyl 5-thio-β-L -xylopyranoside ((+)- 3 ) was synthesized from L -xylose and found to maintain ca. 50% of the antithrombotic activity of its D -enantiomer. Compounds (±)- 5 , (±)- 6 , and (−)- 6 are in vitro substrates for galactosyltransferase 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号