首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Polyhedron》1986,5(9):1459-1465
The new ionic complexes [PtMe3{MeE(CH2)nE′(CH2)nEMe}]+X [n = 3; E = E′ = S : n = 2; E = Se or S; E′ = O, S, Se or SS: X = I, BPh4 or BF4] and [PtMe3(H2NCH2CH2)2E′]+BF4 [E′ = O or SS] have been prepared and characterized by molar-conductivity measurements and 1H NMR spectroscopy. The hitherto unreported ligands [(MeE(CH2)n)2E′] (n = 3; E = E′ = S: n = 2; E = Se; E′ = O or S or Se: n = 2; E = S; E′ = Se] have been characterized by 1H NMR and 77Se NMR (where appropriate), and by mass spectroscopy.  相似文献   

2.
The 31P{1H} nuclear Overhauser effects (NOE's) and 31P-spin-lattice relaxation times (T1) for a series of trans-[PdCl2P2], P ? PEt3, PPr3n, PBu3n, PMe2Ph, PMePh2, P(p-Tol)3, P(cyclohexyl)3 complexes are reported. Both the NOE and T1 values depend upon the choice of solvent. The dipole-dipole mechanism dominates the spin-lattice relaxation of the coordinated phosphorus atom with the T1 values for the PEt3, PPr3n, and P (cyclohexyl)3 complexes decreasing with increasing molecular weight of the phosphine.  相似文献   

3.
205Tl longitudinal relaxation rate measurements were performed on several thallium(III) complexes with the composition Tl(OH)n(H2O)6?n(3?n)+ (n = 1,2), Tl(Cl)n(H2O)m?n(3?n)+, Tl(Br)n(H2O)m?n(3?n)+ (m = 6 for n = 1–2, m = 5 for n = 3, m = 4 for n = 4), Tl(CN)n(H2O)m?n(3?n)+ (m = 6 for n = 1–2, m = 4 for n = 3–4) in aqueous solution, at different magnetic fields and temperatures. 13C and 2D isotopic labelling and 1H decoupling experiments showed that the contribution of the dipolar relaxation path is negligible. The less symmetric lower complexes (n < 4) had faster relaxation rate dominantly via chemical shift anisotropy contribution which depended on the applied magnetic field: T1 values are between 20 and 100 ms at 9.4 T and the shift anisotropy is Δσ = 1000–2000 ppm. The tetrahedral complexes, n = 4, relax slower; their T1 is longer than 1 s and the spin–rotation mechanism is probably the dominant relaxation path as showed by a temperature dependence study. In the case of the TlCl4? complex, presumably a trace amount of TlCl52? causes a large CSA contribution, 300 ppm. Since the geometry and the bond length for the complexes in solution are known from EXAFS data, it was possible to establish a correlation between the CSA parameter and the symmetry of the complexes. The relaxation behaviour of the Tl–bromo complexes is not in accordance with any known relaxation mechanism. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
A series of polychalcogenotrimethylsilane complexes Ar(CH2ESiMe3)n, (Ar=aryl; E=S, Se; n=2, 3, and 4) can be prepared from the corresponding polyorganobromide and M[ESiMe3] (M=Na, Li). These represent the first examples of the incorporation of such a large number of reactive ?ESiMe3 moieties onto an organic molecular framework. They are shown to be convenient reagents for the preparation of the polyferrocenylseleno‐ and thioesters from ferrocenoyl chloride. The synthesis, structures, and spectroscopic properties of the new silyl chalcogen complexes 1,4‐(Me3SiECH2)2(C6Me4) (E=S, 1 ; E=Se, 2 ), 1,3,5‐(Me3SiECH2)3(C6Me3) (E=S, 3 ; E=Se, 4 ) and 1,2,4,5‐(Me3SiECH2)4(C6H2) (E=S, 5 ; E=Se, 6 ) and the polyferrocenyl chalcogenoesters [1,4‐{FcC(O)ECH2}2(C6Me4)] (E=S, 7 ; E=Se, 8 ), [1,3,5‐{FcC(O)ECH2}3(C6Me3)] (E=S, 9 ; E=Se, 10 ) and [1,2,4,5‐{FcC(O)ECH2}4(C6H2)] (E=S, 11 illustrated; E=Se, 12 ) are reported. The new polysilylated reagents and polyferrocenyl chalcogenoesters have been characterized by multinuclear NMR spectroscopy (1H, 13C, 77Se), electrospray ionization mass spectrometry and, for complexes 1 , 2 , 3 , 4 , 7 , 8 , and 11 , single‐crystal X‐ray diffraction. The cyclic voltammograms of complexes 7 – 11 are presented.  相似文献   

5.
The internal and overall motions of 1,3- and 1,4-diethylpyridinium bromides have been studied by 13C relaxation. The enthalpies of activation for the rotation of the ethyl groups in positions 1 and 3 are deduced from the temperature dependence of the T1 values of the methylene and methine carbons. The 14N quadrupolar relaxation time, Tq, together with 13C relaxation data provide an estimate of the 14N quadrupolar coupling constants.  相似文献   

6.
It is essential to develop novel zero- and two-dimensional hybrid perovskites to facilitate the development of eco-friendly solar cells. In this study, we investigated the structure and dynamics of [NH3(CH2)5NH3]CuCl4 via various characterization techniques. Nuclear magnetic resonance (NMR) results indicated that the crystallographic environments of 1H in NH3 and 13C on C3, located close to NH3 at both ends of the cation, were changed, indicating a large structural change of CuCl6 connected to N–H···Cl. The thermal properties and structural dynamics of the [NH3(CH2)nNH3] cation in [NH3(CH2)nNH3]CuCl4 (n = 2, 3, 4, and 5) crystals were compared using thermogravimetric analysis (TGA) and NMR results for the methylene chain. The 1H and 13C spin-lattice relaxation times (T) exhibited similar trends upon the variation of the methylene chain length, with n = 2 exhibiting shorter T values than n = 3, 4, and 5. The difference in T values was related to the length of the cation, and the shorter chain length (n = 2) exhibited a shorter T owing to the one closest to the paramagnetic Cu2+ ions.  相似文献   

7.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of trans ‐( n ‐Bu4N)4[Pt(ECN)2(ox)2], E = S, Se By reaction of (n‐Bu4N)2[Pt(ox)2] with (SCN)2 and (SeCN)2 in dichloromethane trans‐(n‐Bu4N)2[Pt(SCN)2(ox)2] ( 1 ) und trans‐(n‐Bu4N)2[Pt(SeCN)2(ox)2] ( 2 ) are formed. The crystal structures of 1 (triclinic, space group P1, a = 10.219(2), b = 11.329(2), c = 12.010(3) Å, α = 114.108(15), β = 104.797(20), γ = 102.232(20)°, Z = 1) and 2 (triclinic, space group P1, a = 10.288(1), b = 11.332(1), c = 12.048(1) Å, α = 114.391(9), β = 103.071(10), γ = 102.466(12)°, Z = 1) reveal, that the compounds crystallize isotypically with centrosymmetric complex anions. The bond lengths are Pt–S = 2.357, Pt–Se = 2.480 and Pt–O = 2.011 ( 1 ) und 2.006 Å ( 2 ). The oxalato ligands are nearly plane with O–C–C–O torsion angles of 1.7–3.6°. The via S or Se coordinated linear groups are inclined between both oxalato ligands with Pt–E–C angles of 100.4 (E = S) and 97.4° (Se). In the vibrational spectra the PtE stretching vibrations are observed at 299–314 ( 1 ) and 189–200 cm–1 ( 2 ). The PtO stretching vibrations are coupled with internal vibrations of the oxalato ligands and appear in the range of 400–800 cm–1. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtS) = 1.75, fd(PtSe) = 1.35 and fd(PtO) = 2.77 mdyn/Å. The NMR shifts are δ(195Pt) = 5435.2 ( 1 ), 5373.7 ( 2 ) and δ(77Se) = 353.2 ppm with the coupling constant 1J(SePt) = 37.4 Hz.  相似文献   

8.
The spin-lattice relaxation time (T 1) of7Li+ was measured in solutions of LiCl and LiClO4 in protic (MeOH, EtOH,n-PrOH,i-PrOH,n-BuOH, sec-BuOH, formamide, N-methylformamide) and aprotic (MeCN, acetone, methyl ethyl ketone, propylene carbonate, dimethyl sulfoxide, dimethylformamide, hexamethylphosphotriamide) solvents and in mixtures of H2O-formamide, H2O–N-methylformamide, H2O–N,N-dimethylformamide, H2O-DMSO, H2O-hexamethylphosphotriamide, and formamide-N,N-dimethylformamide at 25°C. The values of (1/T 1)0 obtained by extrapolation are discussed in terms of current theories of the magnetic relaxation of ionic nuclei. Linear correlations were found between (1/T 1)0 and Gutmann's donor numbers and Kosower's Z-values. These correlations indicate that relaxation of7Li+ is dominated by donor-acceptor interaction of the cation with solvent molecules. Concentration dependences of 1/T 1 for LiCl and LiClO4 differ from one another in a given solvent, a fact which is accounted for by a specific cation-anion short-range potential. The quantity 1/T 1 of7Li+ atC=1 mole per 55.5 moles of mixed solvent as a function of solvent composition show characteristic features, which are discussed in terms of the relaxation mechanism proposed.  相似文献   

9.
Plant oil‐derived α,ω‐diacetals are polycondensated to the novel polyacetals [OCH2O(CH2)y]n (y = 19 and 23) with molecular weight of ca. M n = 2 × 104 g mol−1. The long methylene sequences provide substantial melt and crystallization temperatures (Tm = 88 °C and Tc = 68 °C for y = 23), and rates of hydrolytic degradation are dramatically lower for the long‐chain polyacetals versus a shorter chain analogue (y = 12) studied for comparison.  相似文献   

10.
Two new isostructural iron(II) spin‐crossover (SCO) framework (SCOF) materials of the type [Fe(dpms)2(NCX)2] (dpms=4,4′‐dipyridylmethyl sulfide; X=S ( SCOF‐6(S) ), X=Se ( SCOF‐6(Se) )) have been synthesized. The 2D framework materials consist of undulating and interpenetrated rhomboid (4,4) nets. SCOF‐6(S) displays an incomplete SCO transition with only approximately 30 % conversion of high‐spin (HS) to low‐spin iron(II) sites over the temperature range 300–4 K (T1/2=75 K). In contrast, the NCSe? analogue, SCOF‐6(Se) , displays a complete SCO transition (T1/2=135 K). Photomagnetic characterizations reveal quantitative light‐ induced excited spin‐state trapping (LIESST) of metastable HS iron(II) sites at 10 K. The temperature at which the photoinduced stored information is erased is 58 and 50 K for SCOF‐6(S) and SCOF‐6(Se) , respectively. Variable‐pressure magnetic measurements were performed on SCOF‐6(S) , revealing that with increasing pressure both the T1/2 value and the extent of spin conversion are increased; with pressures exceeding 5.2 kbar a complete thermal transition is achieved. This study confirms that kinetic trapping effects are responsible for hindering a complete thermally induced spin transition in SCOF‐6(S) at ambient pressure due to an interplay between close T1/2 and T(LIESST) values.  相似文献   

11.
The highly electrophilic borane B(C6F5)3 reacts with n‐octadecanol (n‐C18H37OH) and n‐octadecanethiol (n‐C18H37SH) to form the 1:1 adducts (n‐C18H37EH)B(C6F5)3 (E = O or S). The latter are acidic and react with Cp*TiMe3 in methylene chloride and toluene to give methane and the complexes [Cp*TiMe2][(n‐C18H37E)B(C6F5)3], which are very good initiators for the carbocationic polymerization of isobutene (IB) from ?40 to ?20 °C. High conversions to high molecular weight polyisobutene (PIB) in methylene chloride and moderate conversions to high molecular weight PIB in toluene are observed and are consistent with the anions [(n‐C18H37E)B(C6F5)3]? being very weakly coordinating. Although polymerization in methylene chloride is too rapid for the temperature to be controlled, polymerization in toluene is slower, and the temperatures can be controlled so that Arrhenius‐type plots of the logarithm of the number‐average molecular weight versus T?1 = 1/T may be obtained. Activation energies for the degree of polymerization in these polymerization reactions and similar polymerizations carried out with n‐C18H37EH:borane ratios of 1:2 and with the activators [Ph3C][B(C6F5)4] and Al(C6F5)3 range from ?11 to ?27 kJ mol?1, values comparable to those for most conventional IB polymerization initiators. However, the values of the weight‐average and number‐average molecular weights are unusually high for the temperatures used, and this is consistent with current theories of the role of weakly coordinating anions. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3302–3311, 2002  相似文献   

12.
From the temperature dependence of integrated intensities and from line widths in high-resolution 1H-NMR spectra, the relaxation times T1 and T2 of protons in CH2 and CH3 groups of polyisobutylene in CCl4 solution have been determined. Although the relaxation time T1 of methylene protons is determined mainly by intragroup interactions, intergroup interactions of two methyl groups from each two consecutive monomer units were found to contribute considerably to T1 of methyl protons. The Structure and mobility of polyisobutylene (PIB) molecules in solution is discussed on the basis of the relaxation time data.  相似文献   

13.
The trans‐bis(trimethylsilyl)chalcogenolate palladium complexes, trans‐[Pd(ESiMe3)2(PnBu3)2] [E = S ( 1 ) and Se ( 2 )] were synthesized in good yields and high purity by reacting trans‐[PdCl2(PBu3)2] with LiESiMe3 (E = S, Se), respectively. These complexes were characterized by 1H, 13C{1H}, 31P{1H} (and 77Se{1H}) NMR spectroscopy and single‐crystal X‐ray analysis. The reaction of 2 with propionyl chloride led to the formation of trans‐[Pd(SeC(O)CH2CH3)2(PnBu3)2] ( 3 ), a trans‐bis(selenocarboxylato) palladium complex and thus established a new method for the formation of this type of complex. Complex 3 was characterized by 1H, 13C{1H}, 31P{1H} and 77Se{1H} NMR spectroscopy and a single‐crystal X‐ray structure analysis.  相似文献   

14.
The definition of molecular cooperativity is discussed. The characteristic length of the glass transition describes the size of this cooperativity. Differential scanning calorimetry (DSC) and heat capacity spectroscopy (HCS) results of a series of poly(n-alkyl methacrylates) (alkyl = methyl, ethyl, propyl, butyl, pentyl, hexyl, and octyl) and a series of statistical copolymers poly(n-butylmethacrylate-stat-styrene) are discussed in terms of molecular cooperativity in the αβ splitting region, where a high-frequency dispersion zone a splits off into the main transition zone α and a Goldstein Johari process β at lower frequencies. The characteristic length tends to small values of order one monomer diameter in the splitting region for scenarios with an α relaxation onset. The statements about the size scale of cooperativity are conditional upon certain assumptions leading to the equation used for calculation of this size from HCS and DSC data. The step height of heat capacity (Δcp) and, with less certainty, the square root of the cooperativity volume or number (V1/2α or 1/2α) are proportional to the temperature distance from the cooperativity onset, T = Tons. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
New 1,1′-Ferrocene Dichalcogenato Complexes of Ruthenium and Osmium Both trinuclear 1,1′-ferrocene dichalcogenato complexes(1) such as fc(E[MLn])2 ( 1a—c ) (with [MLn] = Ru(CO)2Cp*; E = S, Se, Te) and dinuclear [3]ferrocenophane derivatives of the type fcE2[MLn] (with [MLn] = Ru(CO)(η6-C6Me6) ( 2a, b ), Ru(NO)Cp* ( 3a, b ) (E = S, Se) or Os(NO)Cp* ( 4a—c ) (E = S, Se, Te)) were synthesized and characterized by their IR-, 1H- and 13C NMR spectra as well as their mass spectra. The molecular structure of fcS2[Os(NO)Cp*] ( 4a ) was determined by an X-Ray structure analysis; the long Fe…?Os distance of 431.1(1)pm excludes any direct bonding interactions.  相似文献   

16.
New Rhenium Complexes Containing Trichalcogenido and Tetrachalcogenido Chelate Ligands The reactions of Cp*ReCl4 with polychalcogenide salts such as Na2S4 or (NEt4)2Se6 lead initially to the violet trichalcogenido chelate complexes Cp*ReCl2(E3) (E = S ( 3a ), Se ( 3b )) which, due to their functional chloro ligands, can be used as intermediates for further reactions. Upon hydrolysis in moist solvents or aminolysis with tert. butylamine 3a, b are converted into the tetrachalcogenido chelate complexes Cp*Re(O)(E4) (E = S ( 4a ), Se ( 4b )) and Cp*Re(NtBu)(E4) (E = S ( 5a ), Se ( 5b )), respectively. X-Ray structure analyses were carried out for the three mononuclear cyclo-oligoselenido compounds 3b–5b . It appears that the size of the Se2?n chelate ring (n = 3 or 4) essentially depends on steric factors within the coordination sphere of rhenium.  相似文献   

17.
2,1,3-Benzochalcogenadiazoles C6R4N2E ( E / R ; E=S, Se, Te; R=H, F, Cl, Br, I) and C6H2R2N2E ( E / R’ ; E=S, Se, Te; R=Br, I) are 10π-electron hetarenes. By CV/EPR measurements, DFT calculations, and QTAIM and ELI-D analyses, it is shown that their molecular electron affinities (EAs) increase with decreasing Allen electronegativities and electron affinities of the E and non-hydrogen R (except Cl) atoms. DFT calculations for E / R +e⋅→[E/R]⋅ electron capture reveal negative ΔG values numerically increasing with increasing atomic numbers of the E and R atoms; positive ΔS has a minor influence. It is suggested that the EA increase is caused by more effective charge/spin delocalization in the radical anions of heavier derivatives due to contributions from diffuse (a real-space expanded) p-AOs of the heavier E and R atoms; and that this counterintuitive effect might be of the general character.  相似文献   

18.
New cadmium chalcogenide cluster molecules [Cd10E4(E'Ph)12(PnPr3)4], E = Te, E' = Te ( 1 ) and [Cd10E4(E'Ph)12 (PnPr2Ph)4] E = Te, E' = Se ( 2 ); E = Te E' = S ( 3 ); E = Se, E' = S ( 4 ) have been synthesized and structurally characterized by single crystal X‐ray structure analysis. The influence of the variation of the chalcogen atom is investigated by structural means and by optical spectroscopy. All cluster‐molecules have a broad emission in the blue‐visible range at low temperature as indicated by photo luminescence (PL) measurements. A clear classification of the emission peak position can be made based on the E' species suggesting that the emission is assigned to transitions associated with the cluster surface ligands. Photoluminescence excitation and absorption measurements display a systematic shift of the band gap to the higher energies with the variation of E and E' from Te to Se to S, as also occurs in the respective series of the bulk semiconductors.  相似文献   

19.
Diselenadiphosphetane Diselenides and Triselenadiphospholane Diselenides – Synthesis and Characterization by 31P and 77Se Solid‐State NMR Spectroscopy 1,3‐Diselena‐2,4‐diphosphetane‐2,4‐diselenides (RPSe2)2 with R = Me, Et, t‐Bu, Ph, 4‐Me2NC6H4, 4‐MeOC6H4 have been synthesized by different methods. The insoluble compounds were investigated by 31P and 77Se solid‐state NMR and the purity of the compounds has been checked by their CP MAS sideband NMR spectra. The structure of the investigated compounds has been confirmed by the isotropic and anisotropic values of the chemical shifts and the 1JP–Se coupling constants. In addition, two new 1,2,4‐triselena‐3,5‐diphospholane‐3,5‐diselenides, (RPSe2)2Se (R = Me, Et), formed under similar synthesis conditions, were investigated. Their structure was derived from the 77Se satellites of 31P solution spectra and from solid‐state spectra. For (t‐BuPSe2)2 the experimentally obtained principal values of phosphorus and selenium shielding tensors are compared with values from IGLO calculations (HF und SOS DFPT). The calculated orientations of the principal axes are discussed.  相似文献   

20.
The phenylidenepyridine (ppy) palladacycles [PdCl(ppy)(IMes)] ( 4 ) [IMes = 1,3‐bis(mesityl)imidazol‐2‐ylidene] and [PdCl(ppy){(CN)2IMes}] ( 6 ) [(CN)2IMes = 4,5‐dicyano‐1,3‐bis(mesityl)imidazol‐2‐ylidene] were prepared by facile two step syntheses, starting with the reaction of palladium(II) chloride with 2‐phenylpyridine followed by subsequent addition of the NHC ligand to the precatalyst precursor [PdCl(ppy)]2. Suitable crystals for the X‐ray analysis of the complexes 4 and 6 were obtained. It was shown that 6 has a shorter NHC‐palladium bond than the IMes complex 4 . The difference of the palladium carbene bond lengths based on the higher π‐acceptor strength of (CN)2IMes in comparison to IMes. Thus, (CN)2IMes should stabilize the catalytically active central palladium atom better than IMes. As a measure for the π‐acceptor strength of (CN)2IMes compared to IMes, the selone (CN)2IMes · Se ( 7 ) was prepared and characterized by 77Se‐NMR spectroscopy. The π‐acceptor strength of 7 was illuminated by the shift of its 77Se‐NMR signal. The 77Se‐NMR signal of 7 was shifted to much higher frequencies than the 77Se‐NMR signal of IMes · Se. Catalytic experiments using the Mizoroki‐Heck reaction of aryl chlorides with n‐butyl acrylate showed that 6 is the superior performer in comparison to 4 . Using complex 6 , an extensive substrate screening of 26 different aryl bromides with n‐butyl acrylate was performed. Complex 6 is a suitable precatalyst for para‐substituted aryl bromides. The catalytically active species was identified by mercury poisoning experiments to be palladium nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号