首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
为了预测二元无机物的标准熵,基于分子图的连接矩阵和离子参数gi、qi,提出了一种新的连接性指数mQ, mG及其逆指数mQ’, mG’。 qi、gi定义为:qi=(1.1+Zi1.1) /(1.7+ni), gi=(1.4+Zi) /(0.9+ri+ri-1),其中Zi 、ni和 ri分别代表离子i的电荷数、最外层主量子数和半径。从0Q, 0Q’, 1G,和1G’,利用多元线性回归分析方法和人工神经网络方法,可以构建优良的QSPR模型。对371个二元无机物,其多元线性模型及神经网络模型的相关系数、标准偏差和平均绝对偏差分别是:0.9905, 8.29 J.K-1.mol-1, 6.48 J. K-1.mol-1, 0.9960, 5.37 J.K-1.mol-1 和 3.90 J.K-1.mol-1。留一法交叉验证表明,其多元线性模型具有良好的稳定性。两个模型对187个未进入模型的二元无机物的标准熵的预测值和实验值之间的相关系数、标准偏差和平均绝对偏差分别是:0.9897, 8.64 J. K-1.mol-1, 6.84 J. K-1.mol-1, 0.9957, 5.63 J.K-1.mol-1, 和 4.18 J.K-1.mol-1。研究表明,本文方法在预测二元无机物标准熵时比文献方法更有效,两种模型均能较精确的预测二元无机物的标准熵,且神经网络模型的预测结果更精确。  相似文献   

2.
The surface segregation of In and S from a dilute Cu(In,S) ternary alloy were measured using Auger electron spectroscopy coupled with a linear programmed heater. The alloy was linearly heated and cooled at constant rates. Segregation data of a linear heat run showed surface segregation of In that reached a maximum surface coverage of 25% followed by S, which reached a coverage of 30%. It was found that after In had reached a maximum surface coverage, it started to desegregate as soon as the S enriched the surface until In was completely replaced by S. The segregation parameters, namely, the pre‐exponential factor (D0), activation energy (Q), segregation energy (ΔG?) and interaction energy (Ω) were extracted from the measured segregation data for both In and S segregation in Cu by simulating the measured segregation data with a theoretical segregation model (modified Darken model). The segregation parameters obtained for In segregation in Cu are D0 = 1.8 ± 0.5 × 10?5 m2 s?1, Q = 184.3 ± 1.0 kJ.mol?1, ΔG? = ?61.4 ± 1.4 kJ.mol‐1, ΩCu?In = 3.0 ± 0.4 kJ.mol?1; for S segregation in Cu the parameters are D0 = 8.9 ± 0.5 × 10?3 m2 s?1, Q = 212.8 ± 3.0 kJ.mol?1, ΔG? = ?120.0 ± 3.5 kJ.mol?1, ΩCu?S = 23.0 ± 2.0 kJ mol?1 and the In and S interaction parameter is ΩIn?S = ?4.0 ± 0.5 kJ.mol?1. The initial parameters used for the Darken calculations were extracted from fits performed with the Fick's and Guttmann model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The Co(NH3)5OH23+ ion reacts with malonate to form Co(NH3)5O2CCH2CO2H2+ or Co(NH3)5O2CCH2CO2+, depending on the pH of the reaction solution. The kinetics of this anation reaction have been studied as a function of [H+] for the acidity range 1.5 ≤ pH ≤ 6.0 in the temperature range of 60 to 80°C, the [total malonate] ≤ 0.5 M, and the ionic strength 1.0M. The anation by malonic acid follows second-order kinetics, the rate constant being 8.0 × 10?5 M?1·sec?1 at 70°C, and the anations by bimalonate (Q1, k1) and malonate ion (Q2, k2) are consistent with an Id mechanism. Typical values at 70°C for the ion pair formation constants are Q1 = 1.3, Q2 = 5.4M?1; and for the interchange rate constants k1 = 5.3 × 10?4; k2 = 7.3 × 10?4 sec?1. The activation parameters for the various rate constants are reported and the results discussed with reference to previously reported data for similar systems.  相似文献   

4.
An explicit DFT modeling of water surroundings on the electron paramagnetic resonance properties of 4‐amino‐2,2,6,6‐tetramethyl‐piperidine‐N‐oxyl (TA) has been performed. A stepwise hydration of TA is accompanied with certain changes in geometrical parameters (bond lengths and angles) and redistribution of partial electric charges in TA. An aqueous cluster of 45 water molecules can be considered as an appropriate model for a complete aqueous shell around TA, although most of the structural and electronic characteristics of TA already converge at about 10 water molecules. Water surroundings induce an increase in electron spin density on the nitrogen atom of the nitroxide fragment due to stabilization of the polar resonance structure > N+?? O? at the expense of less polar structure > N? O?. The water‐induced rise of the isotropic splitting constant aiso, calculated from the contact term of the hyperfine interaction, comprises ΔaisoN2) = 2.2–2.5 G, which is typical of experimental value for TA. There are two contributions to the solvent effect on the aisoN2) value: the redistribution of spin density in the nitroxide fragment (polarity effect) and water‐induced distortions of TA geometry. Microscopic variations in a hydrogen‐bonded water network cause noticeable fluctuations of the splitting constant aisoN2). Calculations of the atomic spin density (σN2) allowed us to compute the splitting constant from the relationship aisoN2) = QσN2, where Q = 36.2 G. A practical advantage of using this relationship is that it gives ‘smoothed’ values of the splitting constant, which are sensitive to the environment polarity but remain tolerant to microscopic fluctuations of the hydrogen‐bonded water network around a spin‐label molecule. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The kinetics of α-methylene-γ-butyrolactone (α-MBL) homopolymerization was investigated in N,N-dimethylformamide (DMF) with azobis(isobutyronitrile) as initiator. The rate of polymerization (Rp) was expresed by Rp = k[AIBN]0.54[α-MBL]1.1 and the overall activation energy was calculated as 76.1 kJ/mol. Kinetic constants for α-MBL polymerization were obtained as follows: kp/kt1/2 = 0.161 L1/2 mol?1/2·s?1/2; 2fkd = 2.18 × 10?5 s?1. The relative reactivity ratios of α-MBL(M2) copolymerization with styrene (r1 = 0.14, r2 = 0.87) were obtained. Applying the Qe scheme led to Q = 2.2 and e = 0.65. These Q and e values for α-MBL are higher than those for MMA  相似文献   

6.
Infrared fluorescence observed after exciting to ν6 (ν=1) of CD3H with a Q-switched CO2 laser yields the exponential deactivation rate constant of 0.84 ms?1 torr?1. Rate constants for deactivation of CD3H by rare gases vary from 1.4 (for He) to 0.029 (for Xe) ms?1 torr?1.  相似文献   

7.
We report the preparation and the full characterization of a novel mononuclear trigonal bipyramidal CoII complex [Co(NS3iPr)Br](BPh4) ( 1 ) with the tetradentate sulfur‐containing ligand NS3iPr (N(CH2CH2SCH(CH3)2)3). The comparison of its magnetic behaviour with those of two previously reported compounds [Co(NS3iPr)Cl](BPh4) ( 2 ) and [Co(NS3tBu)Br](ClO4) ( 3 ) (NS3tBu=N(CH2CH2SC(CH3)3)3) with similar structures shows that 1 displays a single‐molecule magnet behaviour with the longest magnetic relaxation time (0.051 s) at T=1.8 K, which is almost thirty times larger than that of 3 (0.0019 s) and more than three times larger than that of 2 (0.015 s), though its effective energy barrier (26 cm?1) is smaller. Compound 1 , which contains two crystallographically independent molecules, presents smaller rhombic parameters (E=1.45 and 0.59 cm?1) than 2 (E=2.05 and 1.02 cm?1) and 3 (E=2.00 and 0.80 cm?1) obtained from theoretical calculations. Compounds 2 and 3 have almost the same axial (D) and rhombic (E) parameter values, but present a large difference of their effective energy barrier and magnetic relaxation which may be attributed to the larger volume of BPh4? than ClO4? leading to larger diamagnetic dilution (weaker magnetic dipolar interaction) for 2 than for 3 . The combination of these factors leads to a much slower magnetic relaxation for 1 than for the two other compounds.  相似文献   

8.
Kinetics and equilibrium of the complexation of Al3+ with a polycarboxylic acid (PCA, random copolymer of maleic and acrylic acid with a mean molecular weight of 92 kDa) are investigated by the stopped flow technique and potentiometric titration. The complexation proceeds according to the Eigen–Tamm mechanism, i.e. in first diffusion-controlled step an outer sphere complex is formed. The second rate determining step is the formation of the inner sphere complex, controlled by the exchange rate of hydration water. For this second step the rate constant is k 1=3 s-1. It is in the order of magnitude of the water exchange at the Al3+ ion as expected for the Eigen–Tamm mechanism. The activation parameters are also determined. Parallel to this direct reaction path a base catalyzed path is found, typical for complexation reactions of hydrolyzable metal ions. Stable complexes are formed for which the overall association constant K ass=Q o(1+K i) is determined by two parts: a chemical (intrinsic) part, described by the inner sphere association constant K i=3 and an electrostatically controlled part described by the outer-sphere association quotient Q o. The evaluation of the kinetic experiments allows to determine the value of log(Q o) as a function of pH: 3.3<log Q o<4.6. From these data the potential is calculated in the range −67 to ∝93 mV at pH values between 2 and 4. For comparison, analogous experiments with the monomeric subunits of the polyacid, glutarate (GA), and tricarballylate (TCA), are performed. The complexation with the monomeric subunits glutaric- and tricarballylic acid can be explained within the classical view of a discrete outer sphere association constant Q o. Received: 13 November 1997 Accepted: 24 March 1998  相似文献   

9.
The very low pressure reactor (VLPR) technique has been used to measure the bimolecular rate constant of the title reaction at 300 K. The rate constant is given by log k1 (1/mol s) = (11.6 ± 0.4) ? (5.9 ± 0.6)/θ the equilibrium constant has also been measured at the same temperature and is given by K1 = (5.6 ± 1) × 10?3 and hence log k?1 (1/mol s) = 9.5 ± 0.1. The results show that the reaction Br + t? C4H9 → HBr + i? C4H8 is unimportant under the present experimental conditions. Assigning the entropy of t-butyl radical to be 74 ± 2 eu which is in the possible range, the value of K1 gives ΔH (t-butyl) = 9.1 ± 0.6 kcal/mol?1. This yields for the bond dissociation, DH° (t-butyl-H) = 93.4 ± 0.6 kcal/mol. Both of these values are found to be in good agreement with recent VLPP studies.  相似文献   

10.
The reactions D + H2 (v = 0, 1) → HD (v = 0, 1) + H have been studiedin a discharge flow reactor by CARS-spectroscopy. For H2(v = 0) molecules a rate constant of (4, 0 ± 1, 0) 10?16 cm3 s?1 is obtained at 310 K from measured HD (v = 0, 1) product yields. Keeping the degree of vibrational excitation of H2in the microwave discharge in the range of 1% from the increase of the HD (v = 0, 1) CARS signals a rate of k2a, b = (1, 0 ± 0, 4) 10?13cm3 s?1 is derived. The total consumption of H2 (v = 1) in the presence of D atoms gives a rate k2 = (1, 9 ± 0, 2) 10?13 cm3 s?1 at 310 K. The resultsare discussed in regard to previous measurements and theoretical treatments.  相似文献   

11.
The extraction equilibria of nickel(II)-PAR complexes with tetradecyldimethylbenzylammonium chloride(Q+Cl?) are investigated. Two kinds of nickel complex are extracted by chloroform: Ni(HR)2,nQ+Cl?(0)(?500 = 3.73·104l mol?1cm?1) at about pH 5 and 2Q+ NiR2-2(o)(?500 = 8.08·104 l mol?1 cm?1) at above pH 8.5. The extraction constant for 2Q+ NiR2-2(o) was evaluated as [2Q+ NiR2-2]0/[NiR2-2] [Q+]2 = 1011.16 at μ = 0.1 (Na2SO4. Synergic extraction studies of the Ni(HR)2 species under slightly acidic conditions show that the species is Ni(HR)2(H2O)2in auqeous solution and is extracted into chloroform as the adduct Ni(HR)2(TBP)2 (?535 = 3.57·104 l mol?1 cm?1. Based on the extraction behavior of these complexes, the structures of the Ni2+—PAR complexes are discussed.  相似文献   

12.
From calorimetric measurements a model of solution is proposed for LiAlH4 in THF. It is ionised as LiAlH4 ? Li+ + AlH?4. For this reaction, ΔHi = 3.05 kcal mol?1 and the dissociation constant is K = 0.11.  相似文献   

13.
Abstract

The reaction between tetraphenylphosphonium chloride and hydroxide or deuteroxide anions was studied kinetically in a series of dimethylsulphoxide-water mixtures at several temperatures. The rate is first-order in the phosphonium cation and second-order in the hydroxide or deuteroxide anions. The reaction shows a dramatic increase in rate, up to about 1010 times, as the DMSO content is increased. The rate enhancement is attributed to a considerable drop in activation energy affected not only through an increased desolvation of reactant anions, but also through an increase in solvation of the transition state, brought about by gradual addition of DMSO. The kinetic solvent deuterium isotope effect in 60% DMSO-40% D2O is strongly dependent on temperature. The rate constant in the latter solvent mixture is represented by k i = 11.9 e ?12700/RT l 2 mole?2 sec?1 as compared to k i = 19.0 e ?22500/RT l 2 mole?2 sec?1 in the corresponding 60% DMSO-H2O mixture. The thermodynamic parameters of activation show strong dependence on solvent composition and are related to structural changes and solvation power of the reaction medium.  相似文献   

14.
The stepwise acid dissociation constants for p-benzohydroquinone (QH2) in aqueous media have been explicitly calculated for the first time, with the INDO parametrized SCF –MO method. We have optimized the geometries of QH2, QH?, and Q2? and of the QH2 · 6H2O, QH? · (H3O+) · 5H2O, and Q2? · (H3O+)2 · 4H2O systems that model the solvated species. The presence of the associated water molecules (and hydronium ions) account for the stabilization due to hydrogen bonding as well as for a part of the effect of interaction of these molecules with the respective reaction fields in an aqueous medium. To simulate the first solvation shell in a more complete manner, four more water molecules have been considered to be placed above and below the quinonoid ring and the optimized geometries of the resulting hydrated species, QH2 · 10H2O, QH? · (H3O+) · 9H2O, and QH? · (H3O+) · 8H2O, have been determined. The standard free-energy changes calculated for the dissociation of QH2 into QH? and H+ is 0.0251 Hartree (65.9 kJ mol?1) and that of QH? into Q2? and H+ is 0.0285 Hartree (74.8 kJ mol?1). Experimentally observed dissociation constants for these two steps correspond to free-energy changes of 0.0214 Hartree (56.2 kJ mol?1) and 0.0248 Hartree (65.1 kJ mol?1), respectively. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
Kinetics of the reaction of AlCl3 with 1,1-diphenylethylene (DPE) in CH2Cl2 solution have been investigated at low temperature by ultraviolet (UV) spectrophotometry. Initiation proceeds in three successive stages. The first, very fast and leading to a low and constant concentration of carbocations, is assigned to residual traces of cocatalyst. A second stage, slower but more extensive, yields about one carbocation for two aluminum in a reaction that is first order in AlCl3 and first order in monomer (ki = 2.5 10?2 liter mole?1 sec?1 at ?30°; Ei = 10 kcal mole?1). This stage, which takes place after consumption of residual cocatalyst, should be attributed to a direct initiation. In a proposed mechanism the cationic intermediate produced by reaction of DPE with AlCl3 transfers a proton to DPE, thus leading to a stable diphenylethyl cation and to alkenyldichloroaluminum (Al-Cl2CH?CPh2). A third stage develops slowly and the yield in carbocations finally reaches 65–70% with respect to AlCl3. This stage is tentatively assigned to a second direct initiation by the less active organoaluminum compound formed in the preceding stage.  相似文献   

16.
β‐Methyl‐α‐methylene‐γ‐butyrolactone (MMBL) was synthesized and then was polymerized in an N,N‐dimethylformamide (DMF) solution with 2,2‐azobisisobutyronitrile (AIBN) initiation. The homopolymer of MMBL was soluble in DMF and acetonitrile. MMBL was homopolymerized without competing depolymerization from 50 to 70 °C. The rate of polymerization (Rp) for MMBL followed the kinetic expression Rp = [AIBN]0.54[MMBL]1.04. The overall activation energy was calculated to be 86.9 kJ/mol, kp/kt1/2 was equal to 0.050 (where kp is the rate constant for propagation and kt is the rate constant for termination), and the rate of initiation was 2.17 × 10?8 mol L?1 s?1. The free energy of activation, the activation enthalpy, and the activation entropy were 106.0, 84.1, and 0.0658 kJ mol?1, respectively, for homopolymerization. The initiation efficiency was approximately 1. Styrene and MMBL were copolymerized in DMF solutions at 60 °C with AIBN as the initiator. The reactivity ratios (r1 = 0.22 and r2 = 0.73) for this copolymerization were calculated with the Kelen–Tudos method. The general reactivity parameter Q and the polarity parameter e for MMBL were calculated to be 1.54 and 0.55, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1759–1777, 2003  相似文献   

17.
At pH 4.5 (citrate buffer), D -gluconhydroximo-lactone ( 2 ), the N-methylurethane 3 and the N-phenylurethane 4 inhibit competitively the hydrolysis of p-nitrophenyl β-D -glucopyranoside by emulsin. The IC50 values of 2, 3 , and 4 were 1.6 × 10?4, 1.0 × 10?4, and 5.8 × 10?6 M , respectively. The Ki values of 2 and 4 were 9.8 × 10?5 and 2.3 × 10?6 M , respectively, while D-glucono-1,5-lactone ( 1 ) showed IC50 = 1.1 × 10?4 M and Ki = 3.7 × 10?5 M .  相似文献   

18.
A mathematical treatment is presented for the gel-permeation chromatographic and intrinsic viscosity behavior of randomly crosslinked polymers having primary molecular weight distributions of the Schulz-Zimm form. Kimura's serial solution of the integro-differential equation derived by Saito for randomly crosslinked polymers is employed for the distribution function. The intrinsic viscosity of a molecule containing i crosslinks is assumed related to that of a linear molecule of the same number of units through [η]br/ = gi½[η]l where gi = (Rbr2)i/Rl2 = {[1 + (i/6)]½ + (4i/3π)}. Rbrand Rl denoting the root-mean-square radii of gyration of branched and linear chains of the same mass. It is also assumed that GPC elution is controlled by the hydrodynamic volumes of the molecules. Representative calculation results are displayed for polymers with a narrow primary distribution and the “most probable” primary distribution. Results for the latter polymers are compared with those previously obtained by a somewhat different mathematical approach.  相似文献   

19.
原子配分参数、配分连接性指数及其应用   总被引:9,自引:0,他引:9  
结构决定性质,性质反映结构,这是化学、生物学等学科的一条基本规律。因此,分子的微观结构与性质之间存在着密切关系。物质的理化性质、生物活性等数据的获取,迄今主要来自于实验。如能建立结构与性能之间的数量关系用以估算与预测分子的性质,这无疑是一项十分有意义的工作。拓扑指数法以其计算简单、准确性高、应用范围广而在上述领域中发挥重要作用犤1~4犦。拓扑指数是对分子结构进行的定量描述,使分子之间的结构差异定量化。自Wiener提出第一个拓扑指数(W)犤5犦以来,迄今已有200余种拓扑指数问世。其中一部分能够有效地…  相似文献   

20.
Abstract The rate constants for the reactive (kR) and unreactive (kQ) interaction of singlet molecular oxygen with three esters of polyunsaturated fatty acids (PUFA: cis-methyl oleate, MO; cis-methyl linoleate, MLA and cis-ethyl linolenate, ELN) are determined. The values of the ratio kQ/kR are 0.51, 0.26 and 0.20 for MO, MLA and ELN, respectively. This variation results principally from that of kR because the values of kQ are only slightly different (1.24 × 104M?1 s?1 for MO and ~1.0 × 104M?1 s?1 for MLA and ELN). It is shown that the rate constant kQ characterizes mainly an interaction with the unreactive part of the molecule rather than with the double bonds (solventlike quenching). Contrary to the already reported case of 1,5-polyenes for which kQ <<kR, the present results and those obtained from a number of literature data show that for PUFA and their esters, neither kR+ kQ nor kR are proportional to the total number of double bonds or of methylene groups adjacent to the double bonds. Instead, a linear correlation is observed by plotting kRvs the number of methylene groups adjacent to two double bonds. It is deduced that contrary to a common assumption, biallylic hydrogens have a reactivity higher than that of singly allylic hydrogens (reactivity ratio 1.19). The consequence of this result on the estimation of relative contributions of singlet oxygen and radical mechanisms to oxidation processes is discussed. Moreover, the whole of these results allows prediction of the values of kR and kQ for all unsaturated fatty acids (and their esters) of similar structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号