首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three new Pd(II) complexes of Schiff base ligands, namely, [Pd4(L1)4] (1), [Pd2(L2)2Cl2] (2) and [Pd(L3)2Cl2] (3) [HL 1 ?=?N-(benzylidene)-2-aminophenol; L 2 ?=?N-(2,4-dichlorobenzylidene)-2,6-diethylbenzenamine, L 3 ?=?4-(2,4-dichlorobenzylide-neamino)phenol] have been synthesized using solvothermal methods and characterized by elemental analysis, spectroscopy and single crystal X-ray diffraction. The crystal structures of the free ligands were also determined. The ??-oxygen-bridged tetranuclear cyclometallated Pd(II) complex (1) contains four nearly planar units, in which PdII is four-coordinate. Complex 2 is a ??-chloro-bridged dinuclear cyclometallated Pd(II) complex, whereas complex 3 is mononuclear. The Heck reactions of bromobenzene with acrylic acid catalyzed by complexes 1?C3 have also been studied.  相似文献   

2.
The reactions of PhCboSeNa (Cbo = o-C2B10H10), prepared by reductive cleavage of Se-Se bond in (PhCboSe)2 by NaBH4 in methanol, with Na2PdCl4, MCl2(PR3)2 and [M2Cl2(μ-Cl)2(PR3)2] afforded a variety of complexes, viz., [Pd(SeCboPh)Cl] (1), [M(SeCboPh)2(PR3)2], [M2Cl2(μ-SeCboPh)(μ-Cl)(PR3)2] (M = Pd, Pt) and [Pd2Cl(SeCb0Ph)(μ-Cl)(μ-SeCboPh)(PEt3)2] (7) have been isolated. These complexes were characterized by elemental analyses and NMR (1H, 31P, 77Se, 195Pt) spectroscopy. The structures of [Pd(SeCboPh)2(PEt3)2] (2), [Pt(SeCboPh)2(PMe2Ph)2] (3), [Pd2Cl2(μ-SeCboPh)(μ-Cl)(PMe2Ph)2] (5) and [Pd2Cl(SeCboPh)(μ-Cl)(μ-SeCboPh)(PEt3)2] (7) were established by X-ray crystallography. The latter represents the first example of asymmetric coordination of selenolate ligands in binuclear bis chalcogenolate complexes of palladium and platinum. Thermolysis of [Pd(SeCboPh)2(PEt3)2] (2) in HDA (hexadecylamine) at 330 °C gave nano-crystals of Pd17Se15.  相似文献   

3.
《Analytical letters》2012,45(12):2182-2193
K[Pt(NH3)Cl3], a valuable precursor for the preparation of platinum complexes with cytostatic activity, e.g. satraplatin, picoplatin, LA-12 and cycloplatam, is currently prepared from cis-[Pt(NH3)2Cl2] or K2[PtCl4] and these are the usual impurities in the final product. A simple, selective and sensitive HPLC-UV analytical method for the determination of the purity of K[Pt(NH3)Cl3] and the quantification of the impurities has been developed and validated. The platinum complexes present in the final product were separated on a strong base ion exchange column by the gradient elution with detection at 213 nm. Intra-assay precisions for the platinum complexes respective to their ions ([PtCl4]2?, [Pt(NH3)Cl3]? and cis-[Pt(NH3)2Cl2]) were between 0.1 and 2.0% (relative standard deviation); intermediate precisions were between 1.4 and 2.0% and accuracies were between 98.6 and 101.4%. Limits of detection of [PtCl4]2?, [Pt(NH3)Cl3]? and cis-[Pt(NH3)2Cl2] were 6 µg · ml?1, 13 mg · ml?1 and 5 µg · ml?1 respectively, limits of quantification of [PtCl4]2?, [Pt(NH3)Cl3]? and cis-[Pt(NH3)2Cl2] were 51 µg · ml?1, 55 mg · ml?1 and 20 µg · ml?1 respectively.  相似文献   

4.
Metal Ampoules as Mini‐Autoclaves: Syntheses and Crystal Structures of [Al(NH3)4Cl2][Al(NH3)2Cl4] and (NH4)2[Al(NH3)4Cl2][Al(NH3)2Cl4]Cl2 The salts [Al(NH3)4Cl2]+[Al(NH3)2Cl4]≡AlCl3 · 3 NH3 ( 1 ) and (NH4+)2[Al(NH3)4Cl2]+[Al(NH3)2Cl4](Cl)2≡ AlCl3 · 3 NH3 · (NH4)Cl ( 2 ) have been obtained as single crystals during the reactions of aluminum and aluminum trichloride, respectively, with ammonium chloride in sealed Monel metal containers. The crystal structure of 1 was determined again [triclinic, P‐1; a = 574.16(10); b = 655.67(12); c = 954.80(16) pm; α = 86.41(2); β = 87.16(2); γ = 84.89(2)°], that of 2 for the first time [monoclinic, I2/m; a = 657.74(12); b = 1103.01(14); c = 1358.1(3) pm; β = 103.24(2)°].  相似文献   

5.
A neutral complex of palladium(II) with 2,9-dimethyl-1,10-phenanthroline [Pd(2,9-Me2-phen)Cl2] (goldish orange colored) is examined by single crystal X-ray diffraction. The crystals of [Pd(2,9-Me2-phen)Cl2] are monoclinic and belong to the space group P21/n (a = 11.8670(7) Å, b = 7.8195(5) Å, c = 14.2418(9) Å, β = 92.5450(10)°, Z = 4, V = 1320.25 Å3, R = 0.0289). The complex [Pd(2,9-Me2-phen)Cl2] exhibits a strong distortion of the usual square-planar geometry with a deviation of the central Pd2+ ion and two chloride acido-ligands from the plane of coordinated 2,9-dimethyl-1,10-phenanthroline. The lengths of two Pd-N bonds are slightly different and are 2.058 Å and 2.067 Å, the lengths of the Pd-Cl bonds are equal and are 2.285 Å. 2,9-Me2-phen itself also suffers some distortion of the planar geometry resulting in the boat conformation of the molecule. The crystal structure of the [Pd(2,9-Me2-phen)Cl2] complex is characterized by the presence of π-π stacked dimers arranged in infinite tilted stacks.  相似文献   

6.
The compounds, 2,6-bis(3,5-dimethylpyrazol-1-ylmethyl)pyridine (MeNˆNˆN) (L1) and 2,6-bis(3,5-ditertbutylpyrazol-1-ylmethyl)pyridine (tBuNˆNˆN) (L2), react with either [Pd(NCMe)2Cl2] or [Pd(COD)ClMe] to form the mononuclear palladium complexes [Pd(MeNˆNˆN)Cl2] (1), [Pd(MeNˆNˆN)ClMe] (2), [Pd(tBuNˆNˆN)Cl2] (3) and [Pd(tBuNˆNˆN)ClMe] (4). Reactions of 1, 2 and 4 with the halide abstractor, NaBAr4 (Ar = 3,5-(CF3)2C6H3), led to the formation of stable tridentate cationic species [Pd(MeNˆNˆN)Cl]+(5), [Pd(MeNˆNˆN)Me]+ (6) and [Pd(tBuNˆNˆN)Cl]+ (7) respectively. The analogous carbonyl linker cationic species [Pd{(3,5-Me2pz-CO)2-py}Cl]+ (9) and [Pd{(3,5-tBu2pz-CO)2-py}Cl]+ (10), prepared by halide abstraction of the neutral complexes [Pd{(3,5-Me2pz-CO)2-py}Cl2] and [Pd{(3,5-tBu2pz-CO)2-py}Cl2] by NaBAr4, were however less stable with t1/2 of 14 and 2 days respectively. Attempts to crystallize 1 and 3 from the mother liquor resulted in the isolation of the salts [Pd(MeNˆNˆN)Cl]2[Pd2Cl6] (11) and [Pd(tBuNˆNˆN)Cl]2[Pd2Cl6] (12). Although when complexes 14 were reacted with modified methylaluminoxane (MMAO) or NaBAr4, no active catalysts for ethylene oligomerization or polymerization were formed, activation with silver triflate (AgOTf) produced active catalysts that oligomerized and polymerized phenylacetylene to a mixture of cis-transoidal and trans-cisoidal polyphenylacetylene.  相似文献   

7.
The complex [Pd(bipy)Cl2] (1) (bipy = 2,2′-bipyridyl) has been synthesized and characterized by NMR spectroscopy, elemental analysis and X-ray diffraction method. The first step hydrolysis reaction kinetics for the complex was studied by UV-absorption spectroscopy; the speed constant (k 1) was found to be 3.0×10?4 s?1. The fluorescence spectra have been collected to investigate the interaction of complex (1) with fish sperm DNA (FS-DNA) and the results indicate that the complex (1) has an effective intercalation within DNA. The reaction of complex (1) with adenine in ethanol/water results in the compound [Pd2(bipy)2(ade)2]Cl2·3H2O (2) (ade = adenine) whose crystal structure was determined by X-ray diffraction method. The structure is orthorhombic, Pmmn, a = 12.993(4) Å, b = 14.512(5) Å, c = 9.837(3) Å, V = 1854.8(11) Å3, Z = 2 (C30H30Cl2N14O3Pd2), final R 1 = 0.0675. The palladium complex is a binuclear cation, where two ade ligands bridge two Pd(II) centers, while each Pd(II) is also chelated by one bipy ligand.  相似文献   

8.
Three Co(III) complexes with biguanide derivatives [Co(NH2C(=NH)NHC(=NH)NR1R2)3]Cl3 (R1R2 = Me2 (I), Et2 (II), and HsBu (III)) were obtained and characterized by elemental analysis, IR spectroscopy, and electronic absorption spectroscopy. Structure III was confirmed by X-ray diffraction (CIF file CCDC no. 1401783). Complexes I–III and [M(SC(NH2)2)4]Cl2 (M = Pd, Pt, and [Co(En)3]Cl3) were tested for in vitro antiviral activity against the A/California/07/09 (H1N1pdm09) influenza virus. The best results were achieved with complex III and both thiourea complexes.  相似文献   

9.
Imidazole ring is a known structure in many natural or synthetic drug molecules and its metal complexes can interact with DNA and do the cleavage. Hence, to study the influence of the structure and size of the ligand on biological behavior of metal complexes, two water-soluble Pd(II) complexes of phen and FIP ligands (where phen is 1,10-phenanthroline and FIP is 2-(Furan-2-yl)-1H–Imidazo[4,5-f][1, 10]phenanthroline) with the formula of [Pd(phen)(FIP)](NO3)2 and [Pd(FIP)2]Cl2, that were activated against chronic myelogenous leukemia cell line, K562, were selected. Also, the interaction of these anticancer Pd(II) complexes with highly polymerized calf thymus DNA was extensively studied by means of electronic absorption, fluorescence, and circular dichroism in Tris-buffer. The results showed that the binding was positive cooperation and [Pd(phen)(FIP)](NO3)2 (K f = 127 M-1 G = 1.2) exhibited higher binding constant and number of binding sites than [Pd(FIP)2]Cl2 (K f = 13 M-1 G = 1.03) upon binding to DNA. The fluorescence data indicates that quenching effect for [Pd(phen)(FIP)](NO3)2 (K SV = 58 mM?1) was higher than [Pd(FIP)2]Cl2 (K SV = 12 mM?1). Also, [Pd(FIP)2]Cl2 interacts with ethidium bromide-DNA, as non-competitive inhibition, and can bind to DNA via groove binding and [Pd(phen)(FIP)](NO3)2 can intercalate in DNA. These results were confirmed by circular dichroism spectra. Docking data revealed that longer complexes have higher interaction energy and bind to DNA via groove binding.
Graphical Abstract Two anticancer Pd(II) complexes of imidazole derivative have been synthesized and interacted with calf thymus DNA. Modes of binding have been studied by electronic absorption, fluorescence, and CD measurements. [Pd(FIP)2]Cl2 can bind to DNA via groove binding while intercalation mode of binding is observed for [Pd(phen)(FIP)](NO3)2.
  相似文献   

10.
Double complex salts (DCS) α-[Pd(NH3)4][IrF6]·H2O (P21/m, a = 6.3181(3) Å, b = 10.8718(5) Å, с = 7.4526(4) Å, β = 103.568(2)°), β-[Pd(NH3)4][IrF6]·H2O (P21/с, a = 8.5773(3) Å, b = 10.8791(4) Å, с = = 12.6741(3) Å, β = 122.497(2)°), [Pd(NH3)4]3[IrF6]2Cl2·H2O (P-1, a = 7.6080(2) Å, b = 7.6274(2) Å, с = 11.8070(3) Å, β = 122.497(2)°), and [Pd(NH3)4]2[IrF6]NO3 (Fm-3m, a = 11.21210(10) Å) have been synthesized and structurally characterized for the first time. The existence of polymorphs for the DCS has been revealed. The influence of the chemical composition of the initial reagents on the reaction course and, respectively, the products, has been demonstrated. A hypothesis on the influence of the second coordination sphere on the formation of one or the other polymorph of the DCS has been suggested. It has been shown that the series α-[Pd(NH3)4][МF6]·H2O (M = Pt, Pd) exhibits isostructurality.  相似文献   

11.
A diselenide, (MeOOCCH2CH2Se)2 (1) has been prepared by esterification of (HOOCCH2CH2Se)2 in methanol. The reductive cleavage of Se-Se bond in 1 by NaBH4 in methanol generates MeOOCCH2CH2SeNa. The latter in different stoichiometries reacts with [M2Cl2(μ-Cl)2(PR3)2] to give a variety of products of compositions [M2Cl2(μ-SeCH2CH2COOMe)2(PR3)2] (2); [M2Cl2(μ-Cl)(μ-SeCH2CH2COOMe)(PR3)2] (3); [Pd2(SeCH2CH2COOMe)2(μ-SeCH2CH2COOMe)2(PR3)2] (4);[Pd3Cl2(μ-SeCH2CH2COOMe)4(PR3)2] (5). Treatment of complexes 2 with [M2Cl2(μ-Cl)2(PR3)2] affords complexes 3 in nearly quantitative yield. The formation of various products in these reactions is sensitive to stoichiometric ratio of reactants employed. This enables interconversion of various complexes by manipulating mole ratios of appropriate starting materials. A homoleptic palladium complex, [Pd(SeCH2CH2COOMe)2]6 (6) was isolated from a reaction between Na2PdCl4 and MeOOCCH2CH2SeNa. All these complexes have been characterized by elemental analysis, IR, UV-Vis and NMR (1H, 13C, 31P, 77Se, 195Pt) spectroscopy. Structures of trans-[Pd2Cl2(μ-SeCH2CH2COOMe)2(PPh3)2] (2d), [Pt2Cl2(μ-Cl)(μ-SeCH2CH2COOMe)(PnPr3)2] (3e), [Pd3Cl2(μ-SeCH2CH2COOMe)4(PnPr3)2] (5) and [Pd(SeCH2CH2COOMe)2]6 (6) have been established unambiguously by X-ray crystallography. In these complexes, there are bridging selenolate ligands with their uncoordinated ester groups. Compound 6 has a centrosymmetric Pd6Se12 hexagon in which every two palladium atoms are bridged by selenolate ligands. Thermal behaviour of some complexes has been investigated. Pyrolysis of compound 2b in tributylphosphate at 195 °C gave Pd17Se15 nanoparticles which were characterized by XRD and EDAX.  相似文献   

12.
The nitrosation of [Ru(NH3)6]2+ in hydrochloric acid and alkaline ammonia media has been studied; the patterns of interconversion of ruthenium complexes in reaction solutions have been proposed. In both cases, nitrogen(II) oxide acts as the nitrosation agent. The procedure for the synthesis of [Ru(NO)(NH3)5]Cl3 · H2O (yield 75–80%), the main nitrosation product of [Ru(NH3)6]2+, has been optimized. Thermolysis of [Ru(NO)(NH3)5]Cl3 · H2O in a helium atmosphere has been studied; the intermediates have been identified. One of these products is polyamidodichloronitrosoruthenium(II) whose subsequent decomposition gives an equimolar mixture of ruthenium metal and dioxide. The structure of trans-[RuNO(NH3)4Cl]Cl2, formed in the second stage of thermolysis and as a by-product in the nitrosation of [Ru(NH3)6]Cl2, has been determined by X-ray diffraction.  相似文献   

13.
The preparation and structural characterization of dimeric Pd(I)-Pd(I) complex [Pd2{(PPh3)(OSO2CF3)}2].CH2Cl2 (1) and three palladium center [Pd3{(PPh3)(OSO2CF3)}2] (2) and [Pd3(PPh3)4](SO3CF3)2 (3) complexes are reported. The complexes exhibit coordination in which the phosphine phenyl ring is used to stabilize Pd(I) centers in (1) and, Pd(I) and Pd(0) centers in (2) and (3) by acting as π electron donors. The complexes were characterized by single crystal X-ray crystallography.  相似文献   

14.
The [Ir(NH3)5Cl]2[OsCl6]Cl2 binary complex salt has been prepared, and its structure was investigated by single crystal X-ray diffraction. Crystal data: a = 11.1901(13) Å, b = 7.9138(13) Å, c = 13.4384(18) Å; β = 99.640(3)°, V = 1190.0(2), space group C2/m, Z = 2, FW = 1099.47, d x = 3.068 g/cm3. Thermolysis products of [Ir(NH3)5Cl]2[OsCl6]Cl2, [Ir(NH3)5Cl][OsBr6], (NH4)2[OsCl6]x[IrCl6]1?x , and K2[OsCl6]x[IrCl6]1?x were studied by X-ray phase analysis; the unit cell parameters were refined, and the dependence of volume per atom (V/Z) on the composition of the Ir Os1?x solid solution has been plotted.  相似文献   

15.
The diamagnetic complexes [Pd2(H2L1)Cl4] (I), [Pd2(H2L2)Cl4] (II), and Pd2(H2L3)Cl4(III) with chiral ligands derived from the natural monoterpenoid (R)-(+)-limonene are obtained (H2 L1 is ethylenediamine dioxime, H2L2 is piperazine dioxime, and H2L3 is propylenediamine dioxime). According to X-ray diffraction data, the crystal structures of complexes I and II are composed of binuclear acentric molecules. The coordination polyhedra PdN2Cl2 are trapeziums (squares distorted in a tetrahedral manner) made up of two N atoms of the tetradentate bridging cyclic ligands H2L1 and H2L2 and two Cl atoms. The fragments PdCl2 are trans in the complexes. The 13C and 1H NMR spectra of complexes I and II in CDCl3 also suggest their binuclear structures.  相似文献   

16.
Organosilicon gels [Co(NH2R2)2Cl2] and [Cr(NH2R2)3Cl3], containing a diaminodichloride complex of cobalt(II) and triaminotrichloride complex of chromium(III) (R2 = CH2CH2CH2SiO(OEt)), were synthesized by the hydrolysis of complexes [Co(NH2R1)2Cl2] (I) and [Cr(NH2R1)3Cl3] (II) incorporating peripheral triethoxysilyl groups (R1 = CH2CH2CH2Si(OEt)3). The coprecipitated [Co(NH2R2)2Cl2] · 4NH2R3, [Cr(NH2R2)3Cl3] · 6NH2R3, [Co(NH2R2)2Cl2] · 2SiO2, and [Cr(NH2R2)3Cl3] ·xSiO2 · (3 – x)SiHO1.5 (R3 = CH2CH2CH2SiO1.5) gels were obtained by cohydrolysis of complexes I and II with 3-aminopropyltriethoxysilane or triethoxysilane. Interaction with SiH(OEt)3 is accompanied by the decomposition of silicon hydride groups and the formation of tetraethoxysilane derivatives. The heating of dry gels in a flow of argon or oxygen to 600° results in the formation of amorphous silica having a specific surface area 2–467 m2/g and containing crystalline metals, their chlorides, oxides, silicates, or carbides.  相似文献   

17.
A method for the preparation of [Pd(NH3)4Cl2]Cl2 through the oxidation of [Pd(NH3)4]Cl2 with a mixture of HCl and HNO3 acids (3 : 1) in an aqueous-ammonia solution was proposed. The composition of the product was confirmed by X-ray diffraction and chemical analyses and IR and Raman spectroscopy. The yield of the product was higher than 90%, and the content of the main substance was estimated as at least 95%. The crystallographic parameters of [Pd(NH3)4Cl2]Cl2 were determined. The salt was found to be isostructural to Gros salt [Pt(NH3)4Cl2]Cl2.  相似文献   

18.
Synthesis and Structure of Ammine and Amido Complexes of Iridium The reaction of (NH4)2[IrCl6] with NH4Cl at 300 °C in a sealed glass ampoule yields the iridium(III) ammine complex (NH4)2[Ir(NH3)Cl5], which crystallizes isotypically with K2[Ir(NH3)Cl5] in the orthorhombic space group Pnma with Z = 4, and a = 1350.0(2); b = 1028.5(3); c = 689.6(2) pm. The reaction of (NH4)2[IrCl6] with NH3 at 300 °C, however, gives the already known [Ir(NH3)5Cl]Cl2 beside a small amount of [Ir(NH3)4Cl2]Cl2. In pure form [Ir(NH3)5Cl]Cl2 is obtained by ammonolysis of (NH4)2[Ir(NH3)Cl5] at 300 °C with NH3. [Ir(NH3)4Cl2]Cl2 crystallizes triclinic (P1, Z = 1, a = 660,2(3); b = 680,4(3); c = 711,1(2) pm; α = 103,85(2)°, β = 114,54(3)°, γ = 112,75(2)°). The structure contains Cl anions and [Ir(NH3)4Cl2]2+ cations with a trans position of the Cl atoms. Upon reaction of [Ir(NH3)5Cl]Cl2 with Cl2 one ammine ligand is eliminated yielding [Ir(NH3)4Cl2]Cl, which is transformed to orthorhombic [Ir(NH3)4(OH2)Cl]Cl2 (Pnma, Z = 4, a = 1335,1(3); b = 1047,9(2); c = 673,4(2) pm) by crystallization from water. In the octahedral complex [Ir(NH3)4(OH2)Cl]2+ the four ammine ligands have an equatorial position, whereas the Cl atom and the aqua ligand are arranged axial. Oxidation of (NH4)2[Ir(NH3)Cl5] with Cl2 at 330 °C affords the tetragonal IrIV complex (NH4)[Ir(NH3)Cl5] (P4nc, Z = 2, a = 702.68(5); c = 912.89(9) pm). Its structure was determined using the powder diagram. Oxidation of (NH4)2[Ir(NH3)Cl5] with Br2 in water, on the other hand, gives (NH4)2[IrBr6] crystallizing in the K2[PtCl6] type. Oxidation of (PPh4)2[Ir(NH3)Cl5] with PhI(OAc)2 in CH2Cl2 affords the IrV amido complex (PPh4)[Ir(NH2)Cl5].  相似文献   

19.
The reaction of the palladium nitrate trans-[Pd(NO3)2(H2O)2] with acetylacetone affords mononuclear [Pd(acac)2] (acac = acetylacetonate), mixed-ligand binuclear [Pd2(acac)3NO3] (1) and polynuclear [Pd(acac)NO3]n (2) complexes depending on the Pd:acetylacetone ratio in the reaction mixture. The binuclear 1 and insoluble polynuclear 2 were isolated and studied by single-crystal X-ray diffraction (1) and solid-state 13C MAS NMR (1 and 2). It was found that in both compounds the Pd ions are linked together through bridging acetylacetonate ligands where one metal atom is connected to the usual O,O-donor sites, whereas the other metal atom forms a bond with the γ-carbon center. Based on a topological quantum-chemical method, the Pd-γ-C bond was classified as a strained dative bond.  相似文献   

20.
Summary The complex [Pd(dpmMe)2]Cl2 [dpmMe = 1,1-bis-(diphenylphosphino) ethane] was prepared from [PdCl2-(PhCN)2], whilst [Pd2X2(-dpmMe)2] complexes were prepared from [PdCl2PhCN2] and [Pd(PPh3)4] (X = Cl), [PdBr( 3-C3H5)]2 (X = Br), or [Pd2Cl2(-dpmMe)2] (X = I). Reaction of [Pd2Cl2(-dpmMe)2] with MeO2C-C523-01CCO2Me(L) gave the A-frame complex [PdCl2(-L) (-dpmMe)2]. The complexes [PtCl2(dpmMe)] and [Pt(dpmMe)2]Cl2 were prepared from [PtCl2(Bu t CN)2]. Treatment of either [PtCl2(dpmMe)] with PhC523-02CLi or [Pt(dpmMe)2]Cl2 with MeONa gave [Pt(Ph2PCMe· PPh2)2]. Reaction of [PtCl2(Bu t CN)2] with [Pt(PPh3)4] and dpmMe gave a mixture of [Pt2Cl2(-dpmMe)2] and [PtCl2(dpmMe)]. The heterobimetallic complexes [Pt(C523-03CPh)2 (-dpmMe)2MX] (MX = HgCl2 or AgCl) were made from the reaction of [Pt(dpmMe)2]Cl2 with Hg(C523-04CPh)2 or Ag(C523-05CPh), respectively. Reaction of the Pt-Hg complex with Na2S gave [Pt(C523-06CPh)2 ( 1-dpmMe)2]. Oxidative addition of MeI to [PtMe2· (dpmMe)] gave two PtIV isomers of the formula [PtMe3I(dpmMe)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号