首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on Nickel Oxide Mixed Catalysts. XVI. Reduction Behaviour of Amorphous NiO? Al2O3/SiO2 Catalysts The reduction behaviour of NiO? Al2O3/SiO2 catalysts prepared by precipitationdeposition is influenced by the phase composition (amorphous nickel layersilicates and nickel alumino layersilicates, nickel spinels, nickel oxide) and the differences of the composition between surface and bulk. TPR measurements, determinations of the reduction degree, and the nickel particle sizes by static magnetic measurements showed that the reducibility of the NiO? Al2O3/SiO2 catalysts is enhanced and the nickel dispersity is decreased at low Al2O3 contents. The decrease of the reducibility at Al2O3 contents >5 mole% is caused by the formation of nickel spinels and the decrease of the NiII ion surface concentration.  相似文献   

2.
Studies on Nickel Oxide Mixed Catalysts. VIII. Catalytic Properties of NiO? Al2O3/SiO2 Catalysts Catalytic properties of NiO? Al2O3/SiO2 catalysts prepared by precipitation-deposition and impregnation have been investigated in dimerization of ethene and isomerization of but-1-ene. It was found that the catalytic activity is mainly determined by the interaction between the catalyst components where a X-ray amorphous nickel alumolayersilicate is formed. The dimerization of ethene proceeds by participation of coordinatively unsaturated nickel ions with aluminum ions in the neighbourhood. The catalytic activity in the isomerization of but-1-ene depends on the surface acidic properties of the catalyst.  相似文献   

3.
Studies on Nickel Oxide Mixed Catalysts. XV. Surface Chemical Properties of NiO/Al2O3-SiO2 Catalysts Surface chemical properties of precipitated NiO/Al2O3? SiO2 catalysts different compositions and the corresponding Al2O3? SiO2 carriers have been investigated. Infrared spectroscopic measurements (before and after adsorption of pyridine and ammonia), 1H-n.m.r. and ammonia adsorption measurements showed that the number of the Lewis-acidic sites are increased mainly by incorporation of the nickel component on the X-ray amorphous Al2O3? SiO2 carriers, whereas the number of the hydroxide groups do not change significantly. With growing alumina content the number and the strength of the Lewis-acidic sites are increased where the part of the NiII surface sites decreases and those of the AlIII surface sites increases. Brönsted-acidic sites are detectable at high alumina contents.  相似文献   

4.
Studies on Nickel Oxide Mixed Catalysts. I. Structural Properties of NiO/SiO2 Catalysts Structural properties of NiO/SiO2 catalysts prepared by precipitation-deposition and impregnation have been investigated. A nickel-layer-silicate like structure is formed only in the precipitated catalysts showed infrared spectroscopic measurements. After thermal treatment at 723 K by means of magnetic measurements and reflectance spectroscopy besides Ni2+ ions in octahedral environment tetrahedral coordinated Ni2+ions were found. The part of tetrahedral coordinated Ni2+ ions is independent of the NiO-content up to 40 mole % NiO. Nickel oxide is formed above a content of 40 mole %. In the case of the impregnated catalysts nickel oxide cluster are formed on the surface after annealing at 723 K.  相似文献   

5.
Studies on Oxide Catalysts. XLI. Redox Behavior of Nickel in Zeolites NiNa? Y. 3. Reducibility of Ni2+ Ions and Properties of the Reduced Nickel in Acidic Zeolites NiNa? Y The reducibility of nickel ions in zeolites NiNa? Y and the properties of metallic nickel were evaluated by tpr measurements, oxygen chemisorption and conversion of cyclohexane. In NiNa? Y samples which contain NH4+(H+) and/or Al3+(H+) ions the reducibility of Ni2+ ions is decreased caused by increasing acidity and the metal dispersion is improved. The electronic interaction between the acidic support and the metallic nickel leads to a decrease of both dehydrogenation and hydrogenolysis activity whereas the dehydrogenation selectivity increases.  相似文献   

6.
The mesostructured silica SBA-15, γ-Al2O3, and amorphous silica-alumina are modified with Ni(acac)2 in the liquid and gas phases. This process depends crucially on the nature of active sites on the support surface. In the modification of materials containing weakly acidic or weakly basic hydroxyl groups, it is necessary to use low-polarity solvents. The dominant Ni(acac)2 chemisorption sites on amorphous silica-alumina are the acid hydroxyls of ≡Si-OH-Al= bridges. The covalent bonding resulting from the replacement of the acetylacetonate ligand favors the fixation of the adsorbed complex on the support surface. The coordinatively unsaturated sites formed by Al3+ ions play an insignificant role in Ni(acac)2 chemisorption. The degree of dispersion of the oxide phase in the resulting catalysts depends strongly on the strength of the interaction between the modifier molecules and the active sites of the support. This is not the case with the aluminum acetylacetonate complexes that form upon the modification of the Al-containing supports. Gas-phase modification affords finer NiO particles than liquid-phase modification.  相似文献   

7.
采用表面改性法和等体积浸渍法制备了NiO-V2O5/SiO2和Cu/NiO-V2O5/SiO2光催化剂. 用TPR, XRD, UV-Vis DRS, IR和TPD-MS技术对催化剂的结构、吸光性能和化学吸附性能进行了表征, 研究了催化剂上CO2和甲醇光促表面催化反应的反应性能. 结果表明, 半导体NiO和V2O5复合后部分形成了Ni2+—O—V5+键联, 而且NiO和V2O5在催化剂表面有相互修饰作用, NiO的加入有助于提高V2O5在载体SiO2表面的分散程度, 抑制V2O5的聚集, 而且金属Cu和NiO的引入扩展了催化剂的光响应范围. 在催化剂表面存在多种活性吸附位, 催化剂对CO2和甲醇的有效吸附使得其在较低温度下就能促进碳酸二甲酯的紫外光化学合成. 用Cu/NiO-V2O5/SiO2催化剂, 在常压、空速300 h-1、140 ℃和125 W紫外灯辐照的情况下, CH3OH的转化率为14.2%, 碳酸二甲酯的选择性可达89.9 %.  相似文献   

8.
Studies on Oxide Catalysts. XXVIII. Influence of Pretreatment on Catalytic Properties of Zeolites NiNaY and NiCoNaY The influence of the pretreatment conditions on the acidic properties, the reduction degree of nickel, and the catalytic activity and selectivity of zeolites NiNaY and NiCoNaY in the alkylation of benzene with ethylene has been investigated. From the experimental results can be concluded that sec. buthylbenzene from benzene and ethylene is only formed on zeolite samples which contain both together BRÖNSTED acidic centres and Ni2+ cations or NiO. Catalysts which contain only metallic nickel are inactive for this reaction. Catalysts with nickel in different forms are active in the formation of ethylbenzene, diethylbenzene, butane and sec. buthylbenzene, the yields depending on the relation of Ni°, Ni2+, and NiO. Changing this relation makes possible to regulate the selectivity in the alkylation of benzene with ethylene.  相似文献   

9.
The contribution of different MgO supports to the coordination polymerization of ethylene was studied by x-ray diffractometry and infrared (IR) and electron spin resonance (ESR) spectroscopy of the supports and their products after treatment with TiCl4. It was concluded that TiCl4 was bonded on the surface OH groups of MgO mainly in inactive form, whereas the majority of the active sites was associated with the coordinatively unsaturated O2? ions.  相似文献   

10.
Photochemical activation of nickel‐azido complex 2 [Ni(N3)(PNP)] (PNHP=2,2′‐di(isopropylphosphino)‐4,4′‐ditolylamine) in neat benzene produces diamagnetic complex 3 [Ni(Ph)(PNPNH)], which is crystallographically characterized. DFT calculations support photoinitiated N2‐loss of the azido complex to generate a rare, transient NiIV nitrido species, which bears significant nitridyl radical character. Subsequent trapping of this nitrido through insertion into the Ni? P bond generates a coordinatively unsaturated NiII imidophosphorane P?N donor. This species shows unprecedented reactivity toward 1,2‐addition of a C? H bond of benzene to form 3 . The structurally characterized chlorido complex 4 [Ni(Cl)(PNPNH)] is generated by reaction of 3 with HCl or by direct photolysis of 2 in chlorobenzene. This is the first report of aromatic C? H bond activation by a trapped transient nitrido species of a late transition metal.  相似文献   

11.
The reaction of NiII with a tetra‐benzoate pyrene ligand produces a 3D porous framework based on infinite 1D NiII chains. The NiII–O connectivity and the formation of a hydroxo‐bridge (μ3‐OH) responsible for the connection of the central NiII atoms within the 1D NiII–(μ3‐OH)2–NiII chains can be straightforwardly compared with the TiIV–O–TiIV connectivity seen in TiO2. The arrangement of the TBAPy ligand around the 1D rutile‐based chains leads in the generation of a porous framework with two distinct types of pores; based on the chemistries of these two types of pores, one can be labelled as hydrophobic and the other as hydrophilic. The use of different activation methods results in the generation of either a porous framework free of guest molecules or a completely solvent‐free material, in which the terminal H2O molecules bound to NiII were removed, leading thus to a framework with open NiII sites. CO2 isotherms collected on both frameworks at 195 K and one barshowed type I isotherms characteristic of microporous materials (BET surface areas for: guest‐free framework: 257(3) m2 · g–1; solvent‐free framework: 362(2) m2 · g–1). The affinity of both networks at zero coverage for both CO2 and CH4 was found to be greater when the unsaturated NiII sites are available within the void space.  相似文献   

12.
The state of Ni supported on HZSM‐5 zeolite, silica, and sulfonated carbon was studied during aqueous‐phase catalysis of phenol hydrodeoxygenation using in situ extended X‐ray absorption fine structure spectroscopy. On sulfonated carbon and HZSM‐5 supports, NiO and Ni(OH)2 were readily reduced to Ni0 under reaction conditions (≈35 bar H2 in aqueous phenol solutions containing up to 0.5 wt. % phosphoric acid at 473 K). In contrast, Ni supported on SiO2 was not stable in a fully reduced Ni0 state. Water enables the formation of NiII phyllosilicate, which is more stable, that is, difficult to reduce, than either α‐Ni(OH)2 or NiO. Leaching of Ni from the supports was not observed over a broad range of reaction conditions. Ni0 particles on HZSM‐5 were stable even in presence of 15 wt. % acetic acid at 473 K and 35 bar H2.  相似文献   

13.
Investigations on Metal Catalysts. XXXII. On Alloying and Dispersion of Nickel-Rhenium Catalysts Unsupported Ni? Re catalysts were prepared by reduction of mixtures from NiO and NH4ReO4 at 400°C with hydrogen (1st series), followed by a heat treatment at 650°C in flowing hydrogen (2nd series). The bimetallic powders were characterized by DTA investigations, X-ray measurements, N2 adsorption, and CO chemisorption. The degree of alloying and the changes in dispersion as a result of adding a second metal to a basic one is discussed.  相似文献   

14.
A new oxamato-bridged NiIICuIINiII species, [Ni(iprtacn)]2[Cu(pba)(H2O)0.5](BPh4)2 (1), (iprtacn?=?1,4,7-triisopropyl-1,4,7-triazacyclononane; pba?=?1,3-propylenebis(oxamato)) has been synthesized and structurally as well as magnetically characterized. Complex 1 has a discrete trinuclear NiIICuIINiII structure: Two nickel(II) ions are bridged by [Cu(pba)]2? with the macrocyclic ligand iprtacn a terminal ligand of nickel(II). Fitting the magnetic data of 1 led to g Cu?=?2.16, g Ni?=?2.18, J?=??112.5?cm?1, D?=?±7.78?cm?1. The irregular spin state structure and interaction of complex 1with DNA are described here.  相似文献   

15.
To improve the performances of p-Dye Sensitized Solar Cell (p-DSSC) for the future, the synthesis of modified p-type nickel oxide semiconductor, commonly used as photocathode in such devices, was initiated with Ni3O2(OH)4 as precursor. This specific nickel oxyhydroxide was first characterized by X-ray photo-electron spectroscopy and magnetic susceptibility measurements. Then its thermal decomposition was thoroughly studied in order to control the particles size of the as-prepared NiO nanopowders. Low temperature decomposition in air of this precursor allows the formation of Ni1−xO nanoparticles with a large amount of Ni vacancies and specific surface areas up to 250 m2 g−1. Its ammonolysis at 250 °C leads to nanostructured N-doped NiO (NiO:N) materials.  相似文献   

16.
Heat of adsorption and isotherm of water vapor on NiO samples were measured simultaneously at 301 K to examine the energetic properties of the surface. They revealed that NiO has a relatively uniform surface. The heat of adsorption ranging 80–90 kJ·mol–1 indicates the production of surface hydroxyl groups on the (100) plane of NiO. It is relatively small compared with that of other metal oxides, which suggests a weak nature of the Ni2+ ion sites for chemisorption of water. It is suspected that half of the surface Ni2+ ions are covered with hydroxyl groups and the remainings act as relatively strong physisorption sites for water molecules.The authors are grateful for the help of Prof. S. Kittaka of Okayama University of Science in taking electron micrographs. This work was partly supported by Grant-in-Aid for Scientific Research No. 02640348 from the Ministry of Education, Science and Culture of Japanese Government.  相似文献   

17.
A preparation of HfO2, derived from the hydrolysis of hafnium isopropylate, has been characterized by XRD, (HR)TEM, MR and adsorption microcalorimetry. The thermal destruction of the amorphous hafnium hydroxide starting phase is complete at ≈700 K, and leads to the crystalline (monoclinic) phase of HfO2. The latter exhibits a particle morphology which, upon thermal treatment, evolves quickly from one of large and loose aggregates of tiny microcrystallites (microcrystalline HfO2) to one made of large single crystallites or of large polyaggregates, in which relatively small ordered microcrystals stack together in a rather disordered fashion (partially sintered HfO2). The evolving morphology of HfO2 is monitored, on a microscopic surface scale, by a varying IR spectrum of surface OH groups and by a varying surface Lewis acidic activity (e.g. towards CO chemisorption), due to coordinatively unsaturated Hf4+ surface centres produced upon vacuum activation. CO uptake, both at ambient temperature and at low temperature (≈78 K), is mainly due to two families of adsorbing sites: sites in structurally and/or coordinatively highly defective configurations, onto which CO adsorbs with an adsorption enthalpy of ≈65 kJ mol−1, and sites located in relatively extended patches of regular crystallographic planes, onto which CO adsorbs with an adsorption enthalpy of ≈50 kJ mol−1. The relative population of the two families of adsorbing sites depends to some extent on the degree of sintering of the material, but it is observed that, unlike other similar systems, the early sintering process causes a rather limited destruction of the crystallographically/coordinatively defective configurations. Both families of adsorbed CO species exhibit a strong dependence of their spectral features on several parameters, among which of primary importance are the degree of surface hydration/dehydration and the surface concentration of charge withdrawing/releasing adsorbed species which, through surface inductive effects, affect the strength of the CO adsorption process.  相似文献   

18.
Studies on Oxide Catalysts. XLii. Redox Behaviour of Nickel in Zeolites NiNa? Y. 4. Influence of Composition on the Reducibility of Nickel in Zeolites NiNa? Y By chemical analysis (reaction with K2Cr2O7) and ESCA investigations we determined the degree of reduction in reduced samples NiNa-Y as function of the mole ratio SiO2/Al2O3 (module), of the Ni2+ degree of exchange and the kind of the second cations. (NH4+, Ca2+, Co2+, and Nd3+) in the temperature region of 620–770 K. The degree of nickel reduction increases with increasing module, decreasing degree of exchange and decreasing number of Brönsted acidic centres. This behaviour is caused by the influence of the interaction between cations Ni2+ and zeolite lattice on the reduction equilibrium.  相似文献   

19.
Green Bis-(2-iminoisopropyl-thiophenolato)nickel(II) and other Similar NiII Complexes The compounds [NiII(iitp)2] 1 (iitp = 2-iminoisopropyl-thiophenolate), [Ni(imptp)2] · 2 CH3OH 2 , a dinuclear compound with an Ni? Ni distance of 276 pm, and [PPh4] · [NiII(imptp)(SCN)] 3 (imptp = 2-(2-iminopentane-4-on)-thiophenolate) have been prepared by the reaction of nickel(II)-acetate-tetrahydrate with 2-iminoisopropyl-thiophenole and 2-(2-iminopentane-4-on)-thiophenole in methanol, respectively. They have been characterized by single-crystal X-ray structure analysis and other physical methods. The redox behaviour of 1–3 has been studied in detail (chemically as well as by cyclovoltammetry and ESR spectroscopy). Particularly interesting are the electronic properties of 1 and its reduction with NaBH4 and the following reaction of the product with O2. The complexes are model compounds for some Ni-containing enzymes. For details of the crystal structure determination see “Inhaltsübersicht”.  相似文献   

20.
Complexing processes in the NiII-TTA-methanal (A) and NiII-TTA-propanone (B) triple systems (TTA–5-methyl-4-amino-3-thiooxo-1, 2, 4-triazapentene-1) in ethanol solution and nickel(II)hexacyanoferrate(II) gelatin-immobilized matrix have been studied. In the NiII-TTA- methanal system, formation of NiII oligomeric coordination compounds in which metal chelate cycles are connected by–H2C–O–CH2–structural groups, takes place. In the NiII-TTA-propanone triple system, formation of only NiII complexes with TTA takes place. No complexing process in the triple systems in nickel(II)hexacyanoferrate(II) gelatin-immobilized matrix was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号