首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Selenostannates from Aqueous Solution, Preparation and Structure of Na4Sn2Se6 · 13 H2O The dimeric anion Sn2Se64? is prepared by reaction of SnSe2 with alkali metal selenide in a 1:1 molar ratio. The orange-red hydrated sodium salt Na4Sn2Se6 · 13 H2O is characterized by a complete X-ray structure analysis and by its vibrational spectrum. The compound is triclinic (P1 ) with a = 7.106(2), b = 10.330(2), c = 19.009(4) Å, α = 78.60(2), β = 85.66(2), γ = 72.85(2)° (?130°C), Z = 2. It contains isolated Sn2Se64? anions consisting of two edge-sharing tetrahedra [Sn? Se 2.456(1)–2.589(1) Å] which are in contact to the hydrated Na+ ions within an extensive hydrogen bridge system. Raman-active vibrations are observed at 260, 202, 188, 116, 93, and 78 cm?1.  相似文献   

2.
Selenostannates from Aqueous Solutions: Preparation and Structure of Na4SnSe4 · 16 H20 Pure selenostannates(IV) are prepared from aqueous solutions by reaction of SnSe2, with alkali selenides, strictly excluding oxygen. Na4SnSe4 · 16 H2O, being obtained from stoicheo-metric 1:2 quantities, is characterized by a complete X-ray structure analysis and by vibrational spectra. The compound is monoclinic (P21/m) with a = 8.673(3), b = 16.563(4), c = 8.647(2) Å, β = 92.10(2)°, Z = 2; it contains isolated tetrahedral SnSe44? ions [Sn? Se 2.504(2)?2.527(2) Å, Se? Sn? Se 106.6(1)?111.1(1)°] which are in contact to the hydrated octahedral [Na(OH2)6]+ ions through Se…?H? O bridges within an extensive hydrogen bridge system. The stretching vibrations of the SnSe44? ion are observed at 195 (n?1) and 252 cm?1 (n?3). The stretching force constant is approximately 1.59 mdyn/Å.  相似文献   

3.
Selenoarsenates from Aqueous Solutions. Crystal Structures of Na3AsO3Se · 12 H2O and Na3AsSe4 · 9 H2O Selenoarsenates are obtained from aqueous solutions as colourless hydrated salts by reactions either of As2O3 with NaOH and selenium or of Na2Se with As2Se3 and selenium under strictly anaerobic conditions. Besides of tetrahedral anions AsO3Se3− and AsSe43−, extensive hydrogen bridge systems with rather strong O H …︁s Se bonds determine the structures. Na3AsO3Se · 12 H2O is orthorhombic (P212121) with a = 9.220(3), b = 13.018(3), c = 14.048(4) Å, Z = 4. Cubic Na3AsSe4 ·s 9H2O (P213) with a = 12.149(3) Å is isotypic to Schlippe's salt, Na3SbS4 · 9 H2O. The full X-ray structure analyses from four-circle diffractometer data show the selenium atoms of the AsO3Se3− and AsSe43− anions to be H-acceptors in six Se …︁ H O hydrogen bridges with d(Se …︁ O) = 3.357–3.693 Å and d(Se …︁ H) = 2.47–2.89 Å. The As Se bond in AsO3Se3− (2.283 Å) is shorter than in AsSe43− (2.319 Å).  相似文献   

4.
Chloro- and Polyselenoselenates(II): Synthesis, Structure, and Properties of [Ph3(C2H4OH)P]2[SeCl4] · MeCN, [Ph4P]2[Se2Cl6], and [Ph4P]2[Se(Se5)2] By symproportionation of elemental selenium and SeCl4 in polar protic solvents the novel chloroselenates(+II), [SeCl4]2? and [Se2Cl6]2?, could be stabilized; they were crystallized with voluminous organic cations. They were characterized from complete X-ray structure analysis. Yellow-orange [Ph3(C2H4OH)P]2[SeCl4] · MeCN (space group P1 , a = 10.535(4), b = 12.204(5), c = 16.845(6) Å, α = 77.09(3)°, β = 76.40(3)°, γ = 82.75(3)° at 140 K) contains in its crystal structure monomeric [SeCl4]2? anions with square-planar coordination of Se(+II). The mean Se? Cl bond length is 2.441 Å. In yellow [Ph4P]2[Se2Cl6] (space group P1 , a = 10.269(3), b = 10.836(4), c = 10.872(3) Å, α = 80.26(3)°, β = 79.84(2)°, γ = 72.21(3)° at 140 K) a dinuclear centrosymmetric [Se2Cl6]2? anion, also with square-planar coordinated Se(+II), is observed. The average terminal and bridging Se? Cl bond distances are 2.273 and 2.680 Å, respectively. From redox reactions of elemental Se with boranate/thiolate in ethanol/DMF the bis(pentaselenido)selenate(+II) anion [Se(Se5)2]2? was prepared as a novel type of a mixed-valent chalcogenide. In dark-red-brown [Ph4P]2[Se(Se5)2] (space group P21/n, a = 12.748(4), b = 14.659(5), c = 14.036(5) Å, β = 108.53(3)° at 140 K) centrosymmetric molecular [Se(Se5)2]2? anions with square-planar coordination of the central Se(+II) by two bidentate pentaselenide ligands is observed (mean Se? Se bond lengths: 2.658 Å at Se(+II), 2.322 Å in [Se5]2?). The resulting six-membered chelate rings with chair conformation are spirocyclically linked through the central Se(+II). The vibrational spectra of the new anions are reported.  相似文献   

5.
Glass Formation and Properties of Chalcogenide Systems. XIII. On the Compounds Na6Ge2S6 · 4 CH3OH and Na6Ge2Se6 · 4 CH3OH The glasses Ge2S3 and Ge2Se3 are soluble in solutions of Na2S or Na2Se in CH3OH forming Na6Ge2S6 · 4 CH3OH and Na6Ge2Se6 · 4 CH3OH. On heating the CH3OH-free substances are formed. From the i.r. and Raman spectra can de seen that the structure of the ions Ge2S, Ge2Se, P2S64?, and of Si2Cl6 is of the same type. The formation of the compounds can be regarded as a chemical proof for the existence of [Ge2S6] and [Ge2Se6] units as structural groups in the glasses Ge2S3 and Ge2Se3.  相似文献   

6.
Cs3AsGeSe5 and Cs4Ge2Se6 can be prepared by methanolothermal reaction of elemental As, Ge and Se with Cs2CO3 at 190 °C. The former quaternary phase contains zweier [{AsGeSe5}3?] chains consisting of corner‐bridged GeSe4 tetrahedra and AsSe3 pyramids and represents the first GeIV‐AsIII chalcogenidometalate. Cs4Ge2Se6 exhibits discrete [Ge2Se6]4? anions formed by two edge‐sharing GeSe4 tetrahedra.  相似文献   

7.
Solvothermal reaction of [MnCl2(amine)] (amine = terpy and tren) with elemental As and Se at a 1:1:2 molar ratio in H2O/tren (10:1) affords the dimanganese(II) complexes [{Mn(terpy)}2(μ‐As2Se4)] ( 1 ) and [{Mn(tren)}2(μ‐As2Se5)] ( 2 ) respectively. The tetradentate [As2Se4]4? bridging ligands in 1 contain a central As–As bond and exhibit approximately C2h symmetry. Pairs of gauche sited Se atoms participate in five‐membered As2Se2Mn chelate rings. In contrast, two AsSe3 pyramids share a common corner in the [As2Se5]4? ligands of 2 and each coordinates an [Mn(tren)]2+ fragment through a single terminal Se atom. Such dinuclear complexes are linked into tetranuclear moieties through weak Se···Mn interactions of length 3.026(3) Å involving one of these terminal Se atoms. At a 1:3:6 molar ratio, solvothermal reaction of [MnCl2(tren)] with As and Se leads to formation of a second dinuclear complex [{Mn(tren)}2(μ‐As2Se6)2] ( 3 ), which contains two bridging bidentate [As2Se6]2? ligands. These are cyclic with an As2Se4 ring and can be regarded as being derived from [As2Se5]4? anions by formation of two Se‐Se bonds to an additional Se atom.  相似文献   

8.
Piaselenole—Piaselenolium—Pentaiodide (C6H4N2Se · C6H5N2Se+ I3? · I2), a Structure with Polyiodide Layers The title compound crystallizes in the monoclinic space group P21/n with a = 9.320(3), b = 13.812(2), c = 17.159(3) Å, β = 96.11(2)°, V = 2196.3 Å3, Z = 4. There occur no isolated I5? anions but layer-shaped polyiodide aggregates built up by linear, asymmetric I3? anions and I2 molecules. Almost linear triiodide chains are connected by I2 molecules in a novel type of arrangement to form slightly puckered layers. The polyiodide layers contain several substructures known from other examples. The piaselenole and its conjugated acid, the piaselenolium cation, form a ribbon-like quasi-polymer in which the two components are alternating. They are connected in turns by a linear NH? N hydrogen bridge (N? N: 2.844 Å) and by a so called (SeN)2-connectivity parallelogram, in which Se? N bonds and Se? N contacts are adjacent. Here we found a very short Se? N contact distance of 2.691 Å. The bond distances of piaselenole (Se? N: 1.787(3) Å, N? C: 1.318(5) Å, C? C: 1.453(8) Å) and also the angles are equal or similar to those occuring in other 1,2,5-selenadiazoles. The protonation of one N in the SeN2 unit results in a loss of symmetry and significant changes in bonding distances and angles.  相似文献   

9.
Solvothermal reaction of [MnCl2(terpy)] with elemental As and Se at a 1:1:2 molar ratio in H2O/trien (10:1) at 150 °C affords the linear trimanganese(II) complex [{Mn(terpy)}3(μ‐AsSe4)2] ( 1 ). The tridentate [AsSe2(Se2)]3? anions of 1 chelate the terminal {Mn(terpy)}2+ fragments and bridge these through their remaining Se atom to the central {Mn(terpy)}2+ moiety. Weak interactions of Mn1···Se and Mn3···Se bonds with length 2.914(7) and 3.000(7) Å link the molecules of 1 into infinite chains. Treatment of [MnCl2(cyclam)]Cl with As and Se at a 1:1:2 molar ratio in superheated H2O/CH3OH (1:1) at 150 °C yields the dinuclear complex [{Mn(cyclam)}2 (μ‐As2Se6)] ( 2 ), whose novel [(AsSe2)2(μ‐Se2)]4? ligands bridge the MnII atoms in a μ‐1κ2Se1, Se2: 2κ2Se5,Se6 manner.  相似文献   

10.
Preparation and Crystal Structure of Na2Sn2Se5 A Novel Chalcogenostannate(IV) with Layered Complex Anions Na2Sn2Se5 was obtained from a stoichiometric mixture of Na2Se, Sn, and Se powders through a solid state reaction at 450 °C. It crystallizes orthorhombic, space group Pbca with a = 13.952(6) Å, b = 12.602(2) Å, c = 11.524(2) Å; Z = 8 and undergoes peritectic decomposition at 471(2) °C. The crystal structure was determined at ambient temperature from diffractometer data (MoKα‐radiation) and refined to a conventional R of 0.040 (1490 Fo's, 83 variables). Na2Sn2Se5 is characterized by layered complex anions running parallel to (100) which are built up by SnSe4 tetrahedra sharing common corners. The mean Sn–Se bond length calculates as 2.252(2) Å. The Na+ cations are coordinated to 6 or 7 Se in irregular configurations. The crystal structure can be described as a stacking of distorted c. p. 36 chalcogen layers and mixed square 44 alkali‐chalcogen layers.  相似文献   

11.
Chloroselenates(IV): Synthesis, Structure, and Properties of [As(C6H5)4]2Se2Cl10 and [As(C6H5)4]Se2Cl9 The Se2Cl102? and Se2Cl9? anions were prepared, as the first dinuclear haloselenates(IV), from the reaction of (SeCl4)4 with stoichiometric quantities of chloride ions in POCl3 solutions; they were isolated as yellow crystalline As(C6H5)4+ salts. Complete X-ray structural analyses at ?130°C of [As(C6H5)4]2Se2Cl10 ( 1 ) (space group P1 , a = 10.296(7), b = 11.271(6), c = 12.375(8) Å, = 74.17(5)°, α = 81.38(5)°, β = 67.69(4)°, V = 1276 Å3) and of [As(C6H5)4]Se2Cl9 ( 2 ) (space group P21/n, a = 12.397(5), b = 17.492(6), c = 14.235(4) Å, α 93.25(3)°, V = 3082 Å3) show in both cases two distorted octahedral SeCl6 groups connected through a common edge in 1 and a common face in 2 . The terminal Se? Cl bonds (average 2.317 Å in 1 , 2.223 Å in 2 ) are much shorter than the Se? Cl bridges (av. 2.661 Å in 1 , 2.652 Å in 2 ). The stereochemical activity of the SeIV lone electron pair causes severe distortion of the central Se2Cl2 ring in the centrosymmetric Se2Cl102? ion. The vibrational spectra of the anions are reported.  相似文献   

12.
Na6Sn4Se11 · 22 H2O can be crystallised at –8 °C as yellow‐orange needles from the 1 : 2 H2O/CH3OH mother liquor of a superheated reaction mixture of NaOH(s), Sn and Se. The bicyclic [Sn4Se11]6– anion exhibits crystallographic C2 symmetry and is composed of corner‐bridged SnSe4 tetrahedra. Two opposite tin atoms of an Sn4Se4 8‐membered ring are linked by a common Se atom, thereby affording two 6‐membered boat‐shaped Sn3Se3 rings with a shared Sn–Se–Sn bridging unit. [Sn4Se11]6– thus represents the immediate precursor of the well‐known adamantane‐like [Sn4Se10]4– anion.  相似文献   

13.
The lanthanide selenidogermanates [{Eu(en)3}2(μ‐OH)2]Ge2Se6 ( 1 ), [{Ho(en)3}2(μ‐OH)2]Ge2Se6 ( 2 ), and [{Ho(dien)2}2(μ‐OH)2]Ge2Se6 ( 3 ) (en = ethylenediamine, dien = diethylenetriamine) were solvothermally prepared by the reactions of Eu2O3 (or Ho2O3), germanium, and selenium in en and dien solvents respectively. Compounds 1 – 3 are composed of selenidogermanate [Ge2Se6]4– anion and dinuclear lanthanide complex cation [{Ln(en)3}2(μ‐OH)2]4+ (Ln = Eu, Ho) or [{Ho(dien)2}2(μ‐OH)2]4+. The [Ge2Se6]4– anion is composed of two GeSe4 tetrahedra sharing a common edge. The dinuclear lanthanide complex cations are built up from two [Ln(en)3]3+ or [Ho(dien)2]3+ ions joined by two μ‐OH bridges. All lanthanide(III) ions are in eight‐coordinate environments forming distorted bicapped trigonal prisms. In 1 – 3 , three‐dimensional supramolecular networks of the anions and cations are formed by N–H ··· Se and N–H ··· O hydrogen bonds. To the best of our knowledge, 1 – 3 are the first examples of selenidogermanate salts with lanthanide complex counter cations.  相似文献   

14.
Concentrated aqueous solutions of magnesium chloride and calcium nitrate, respectively, allow on addition of the potassium salt of tetrathiosquarate, K2C4S4 · H2O, the isolation of the earth alkaline salts MgC4S4 · 6 H2O ( 1 ) and CaC4S4 · 4 H2O ( 2 ) as orange and red crystals. The crystal structure determinations ( 1 : monoclinic, C2/c, a = 17.2280(7), b = 5.9185(2), c = 13.1480(4) Å, β = 104.730(3)°, Z = 4; 2 : monoclinic, P21/m, a = 7.8515(3), b = 12.7705(5), c = 10.6010(4) Å, β = 93.228(2)°, Z = 4) show the presence of C4S42? ions with almost undistorted D4h symmetry having average C–C and C–S bond lengths of 1.451Å and 1.659Å for 1 and 1.451Å and 1.655Å for 2 . The structure of 1 contains discrete, octahedral [Mg(H2O)6]2+ complexes. Several O–H····O and O–H····S bridges with H····O and H····S distances of less than 2.50Å connect cations and anions. The structure of 2 is built of concatenated, edge‐sharing Ca(H2O)6S2 polyhedra. The Ca2+ ions have the coordination number eight, C4S42? act as a chelating ligands towards Ca2+ with Ca–S distances of 3.14Å. The infrared and Raman spectra show bands typical for the molecular building units of the two compounds.  相似文献   

15.
Nonasodium Bis(hexahydroxoaluminate) Trihydroxide Hexahydrate (Na9[Al(OH)6]2(OH)3 · 6H2O) – Crystal Structure, NMR Spectroscopy and Thermal Behaviour The crystal structure of the nonasodium bis(hexahydroxoaluminate) trihydroxide hexahydrate Na9[Al(OH)6]2(OH)3 · 6H2O (4.5 Na2O Al2O3 · 13.5 H2O) (up to now described as 3 Na2O · Al2O3 · 6H2O, 4Na2O · Al2O3 · 13 H2O and [3 Na2O · Al2O3 · 6H2O] [xNaOH · yH2O], respectively) was solved. The X-ray single crystal diffraction analysis (triclinic, space group P1 , a = 8.694(1) Å, b = 11.344(2) Å, c = 11.636(3) Å, α = 74.29(2)°, β = 87.43(2)°, γ = 70.66(2)°, Z = 2) results in a structure, consisting of monomeric [Al(OH)6]3? aluminate anions, which are connected by NaO6 octahedra groups. Furthermore the structure contains both, two hydroxide anions only surrounded by water of crystallization and OH groups of [Al(OH)6]3? aluminate anions and a hydroxide anion involved in three NaO6 coordination octahedra directly and moreover connected with a water molecule by hydrogen bonding. The results of 27Al and 23Na-MAS-NMR investigations, the thermal behaviour of the compound and possible relations between the crystal structure and the conditions of coordination in the corresponding sodium aluminate solution are discussed as well.  相似文献   

16.
X‐ray crystal structures are reported for Na6[RuO2{TeO4(OH)2}2]·16H2O and Na5[Ag{TeO4(OH)2}2]·16H2O which contain respectively RuVI and AgIII coordinated to chelating bidentate tellurate ([TeO4(OH)2]4−) groups. Na6[RuO2{TeO4(OH)2}2]·16H2O: Space group P1¯, Z = 2, lattice dimensions at 120 K; a = 6.9865(1), b = 8.7196(2), c = 11.7395(2)Å, α = 74.008(1), β = 79.954(1), γ = 88.514(1)°; R1 = 0.025. Na5[Ag{TeO4(OH)2}2]·16H2O: Space group P1¯, Z = 2, lattice dimensions at 120 K; a = 5.888(1), b = 8.932(1), c = 12.561(2)Å, α = 98.219(6), β = 97.964(9), γ = 93.238(14)°; R1 = 0.047.  相似文献   

17.
The new hexathiodiphosphate(IV) hydrates K4[P2S6] · 4 H2O ( 1 ), Rb4[P2S6] · 6 H2O ( 2 ), and Cs4[P2S6] · 6 H2O ( 3 ) were synthesized by soft chemistry reactions from aqueous solutions of Na4[P2S6] · 6 H2O and the corresponding heavy alkali‐metal hydroxides. Their crystal structures were determined by single crystal X‐ray diffraction. K4[P2S6] · 4 H2O ( 1 ) crystallizes in the monoclinic space group P 21/n with a = 803.7(1), b = 1129.2(1), c = 896.6(1) pm, β = 94.09(1)°, Z = 2. Rb4[P2S6] · 6 H2O ( 2 ) crystallizes in the monoclinic space group P 21/c with a = 909.4(2), b = 1276.6(2), c = 914.9(2) pm, β = 114.34(2)°, Z = 2. Cs4[P2S6] · 6 H2O ( 3 ) crystallizes in the triclinic space group with a = 742.9(2), b = 929.8(2), c = 936.8(2) pm, α = 95.65(2), β = 112.87(2), γ = 112.77(2)°, Z = 1. The structures are built up by discrete [P2S6]4? anions in staggered conformation, the corresponding alkali‐metal cations and water molecules. O ··· S and O ··· O hydrogen bonds between the [P2S6]4? anions and the water molecules consolidate the structures into a three‐dimensional network. The different water‐content compositions result by the corresponding alkali‐metal coordination polyhedra and by the prefered number of water molecules in their coordination sphere, respectively. The FT‐Raman and FT‐IR/FIR spectra of the title compounds have been recorded and interpreted, especially with respect to the [P2S6]4? group. The thermogravimetric analysis showed that K4[P2S6] · 4 H2O converted to K4[P2S6] as it was heated at 100 °C.  相似文献   

18.
The rhenium cluster complex [{Cu(H2O)0.5(en)2} {Cu(en)2} Re6Se8(CN)6]·3H2O has been obtained by the reaction of an aqueous solution of K4[Re6Se8(CN)6]·3.5H2O with an aqueous solution of Cu(en)2Cl2 using cross diffusion through a gel. The structure of the compound has been characterized by a single-crystal X-ray diffraction method (a = 10.690(3) Å, b = 15.035(5) Å, c = 25.847(8) Å, V = 4154(2) Å3, Z = 4, space group P212121, R = 0.0651). Cluster anions [Re6Se8(CN)6]4? in the complex are connected with Cu2+ cations by cyano bridges resulting in zigzag chains. Coordination environment of cations is completed by ethylenediamine molecules. Additionally each cluster anion is coordinated by one terminal fragment {Cu(H2O)0.5(en)2}.  相似文献   

19.
On the Alkali Selenoarsenates(III) KAsSe3 · H2O, RbAsSe3 · 1/2 H2O, and CsAsSe3 · 1/2 H2O The alkali selenoarsenates(III) KAsSe3 · H2O, RbAsSe3 · 1/2 H2O, and CsAsSe3 · 1/2 H2O have been prepared by hydrothermal reaction of the respective alkali carbonate with As2Se3 at a temperature of 135°C. Their X-ray structural analyses demonstrated that the compounds contain polyselenoarsenate(III) anions (AsSe3?)n, in wich the basic units are ψ-AsSe3 tetrahedra, which are linked together through Se? Se bonds into infinite zweier single chains. The Rb and Cs salts are isotypic.  相似文献   

20.
Crystal and Molecular Structure of 2(C6H5)3AsO · H2SeO3 2(C6H5)3AsO · H2SeO3 crystallizes in the orthorhombic space group Fdd2—C2v19, with a = 20.472(9), b = 32.747(1) and c = 10.008(8) Å and Z = 8; d (calc./obs.) = 1.527/1.52 g · cm?3. The structure has been determined from 808 independent reflections by Patterson- and Fouriersyntheses, and has been refined by least squares methods to R = 0.056. In the compound two (C6H5)3AsO-units and one selenite group are linked by short H-bonds [O …? H …? O-distance 2.48(4) resp. 2.35(4) Å]. The As? O-distances are 1.64(9), the Se? O-distances are 1.69(3), 1.83(3), resp. 1.76(3) Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号