首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis and Structure of Hydrogen Sulfates of the Type M(HSO4)(H2SO4) (M = Rb, Cs and NH4) From the binary systems M2SO4/H2SO4 (M = Rb, Cs, NH4), three new hydrogen sulfates of the type M(HSO4)(H2SO4) could be synthesized and structural characterized. The rubidium and caesium compounds are isotypic whereas NH4(HSO4)(H2SO4) is topologically very similar to both. All three compounds crystallize with nearly identical cell parameters [Rb: a = 7.382(1), b = 12.440(2), c = 7.861(2), β = 93.03(3); Cs: a = 7.604(1), b = 12.689(2), c = 8.092(2), β = 92.44(3); NH4: a = 7.521(3), b = 12.541(5), c = 7.749(3), β = 92.74(3)], in the monoclinic space group P21/c, There exist two kinds of SO4-tetrahedra: HSO4? anions (S1) and H2SO4-molecules (S2). The HSO4? anions form hydrogen bridged zigzag chains. In the case of the Rb and Cs compounds, the H2SO4 molecules connect these chains forming double layers. The metal atoms are coordinated by 9 O-atoms with M? O-distances of 2.97 – 3.39 Å (Rb) and 3.13 – 3.51 Å (Cs). In the ammonium compound additional hydrogen bonds are formed originating from the NH4+ cation. This finally leads to the formation of S2? NH4+ chains (parallel to the S1 chains) as well as to a three-dimensional connection of both kinds of chains.  相似文献   

2.
Ternary Halides of the A3MX6 Type I. A3YCI6 (A = K, NH4, Rb, Cs): Synthesis, Structures, Thermal Behaviour. Some Analogous Chlorides of the Lanthanides Reaction of the trichlorides MCl3 (M = Y, Tb? Lu) with alkali chlorides AC1 (A = K, Rb, Cs) in evacuated silica ampoules at 850?900°C yields A3MCl6-type chlorides. (NH4)3YCl6 is obtained via the ammonium-chloride route. The crystal structure of Rb3YCl6 (monoclinic, C2/c (no. 15), Z = 8, a = 2583(1)pm, b = 788.9(4)pm, c = 1283.9(7)pm, p = 99.63(4)°, R = 0.062, Rw = 0.050) is that of Cs3BiCl6. The Rb3YCl6/Cs3BiCl6 structure and the closely related structures of K3MoCl6 and In2CI3 are derived from the elpasolite-type of structure (K2NaAlF6) making use of the model of closest-packed layer structures. Cell parameters for the chlorides Rb3MCl6 (M = Y, Tb? Lu) and Cs3YCl6 and Cs3ErCl6 as well, which are all isostructural with Rb3YCl6, are given. The “system” (K, NH4, Rb, Cs)YCl6 has been investigated by DTA and high-temperature X-ray powder diffractometry.  相似文献   

3.
Zintl‐Compounds with Gold and Germanium: M3AuGe4 with M = K, Rb, Cs Black, brittle single crystals of M3AuGe4 with M = K, Rb, Cs were synthesized by reactions of alkali metal azides (MN3) with gold sponge and germanium powder at T = 1120 K. The structures of the compounds (space group Pmmn, Z = 2, K3AuGe4: a = 6.655(1)Å, b = 11.911(2)Å, c = 6.081(1)Å; Rb3AuGe4: a = 6.894(1)Å, b = 12.421(1)Å, c = 6.107(1)Å; Cs3AuGe4: a = 7.179(1)Å, b = 12.993(2)Å, c = 6.112(2)Å) were determined from X‐ray single‐crystal diffractometry data. The semiconducting compounds contain equation/tex2gif-stack-2.gif[AuGe4]‐chains with P4‐analogous Ge4‐tetrahedra which are connected by μ2‐bridging gold atoms in a distorted tetrahedral Ge‐coordination.  相似文献   

4.
Alkaline Metal Oxoantimonates: Synthesis, Crystal Structures, and Vibrational Spectroscopy of ASbO2 (A = K, Rb), A4Sb2O5 (A = K, Rb, Cs), and Cs3SbO4 The compounds ASbO2 (A = K/Rb; monoclinic, C2/c, a = 785.4(3)/799.6(1) pm, b = 822.1(4)/886.32(7) pm, c = 558.7(3)/559.32(5) pm, β = 124.9(1)/123.37(6)°, Z = 4) are isotypic with CsSbO2 and the corresponding bismutates. The structures of the antimonates A4Sb2O5 (A = K/Rb: orthorhombic, Cmcm, a = 394.9(1)/407.34(7) pm, b = 1807.4(1)/1893.5(1) pm, c = 636.34(9)/655.60(8) pm, Z = 2) and Cs4Sb2O5 (monoclinic, Cm, a = 1059.81(7) pm, b = 692.68(8) pm, c = 811.5(1) pm, β = 98.7(1)°, Z = 2) both contain the anion [O2SbOSbO2]4–. Cs3SbO4 (orthorhombic, Pnma, a = 1296.1(1) pm, b = 919.24(8) pm, c = 679.95(6) pm, Z = 4) crystallizes with the K3NO4 structure type.  相似文献   

5.
[Ag(NH3)2]ClO4: Crystal Structures, Phase Transition, and Vibrational Spectra [Ag(NH3)2](ClO4) is obtained from a solution of AgClO4 in conc. ammonia as colourless single crystals (orthorhombic, Pnmn, Z = 4, a = 795.2(1) pm, b = 617.7(1) pm, c = 1298.2(2) pm, Rall = 0.0494). The structure consists of linearly coordinated cations, [Ag(NH3)2]+, stacked in a staggered conformation and of tetrahedral (ClO4) anions. A first order phase transition was observed between 210 and 200 K and the crystal structure of the low‐temperature modification (monoclinic, P2/m, Z = 4, a = 789.9(5) pm, b = 604.1(5) pm, c = 1290.4(5) pm, β = 97.436(5)°, at 170 K, Rall = 0.0636) has also been solved. Spectroscopic investigations (IR/Raman) have been carried out and the assignment of the spectra is discussed.  相似文献   

6.
Production and Decomposition of (NH4)[BF4] and H3N‐BF3 (NH4)[BF4] is produced as single crystals during the reaction of elemental boron and NH4HF2 (B : NH4HF2 = 1 : 2) and NH4F (B : NH4F = 1 : 4), respectively, in sealed copper ampoules at 300 °C. The crystal structure (baryte type, orthorhombic, Pnma, Z = 4) was redetermined at ambient temperature (a = 909.73(18), b = 569.77(10), c = 729.47(11) pm, Rall = 0.0361) and at 140 K (a = 887.3(2), b = 574.59(12), c = 717.10(12) pm, Rall = 0.0321). Isolated (NH4)+ and [BF4] tetrahedra are the important building units. The thermal behaviour of (NH4)[BF4] was investigated under inert (Ar, N2) and reactive conditions (NH3) with the aid of DTA/TG and DSC measurements and with in‐situ X‐ray powder diffraction as well. Finally, (NH4)[BF4] is decomposed yielding NH3 and BF3, BN is not produced under the current conditions. Colourless single crystals of H3N‐BF3 were prepared directly from the components NH3 and BF3. The crystal structure was determined anew at 293 and 170 K (orthorhombic, Pbca, Z = 8, a = 815.12(10), b = 805.91(14), c = 929.03(12) pm, Rall = 0.0367; a = 807.26(13), b = 800.48(10), c = 924.31(11) pm, Rall = 0.0292, T = 170 K). The crystal structure contains isolated molecules H3N‐BF3 in staggered conformation with a B‐N distance of 158 pm. The thermal behaviour of H3N‐BF3 was studied likewise.  相似文献   

7.
Complexes of Monovalent Dibenzo‐18‐crown‐6 Cations with Triiodide as Anions The new polyiodides [NH4(db18c6)]2(I3)2 ( 1 ), [NH4(db18c6)](db18c6)I3 ( 2 ), [Na1/2(db18c6)H2O]2I3 ( 3 ), [Rb(db18c6)]I3 ( 4 ), [Rb(db18c6)]2(I3)2 ( 5 ), [Cs(db18c6)]I3 ( 6 ), and [Cs2(db18c6)3][Cs(db18c6)3/2](I3)3 ( 7 ) were obtained from reactions of dibenzo‐18‐crown‐6 (db18c6) and iodine with NH4I, NaI, RbI, and CsI. Their crystal structures were determined by single‐crystal X‐ray diffraction. ( 1 ) M = NH4, ( 5 ) M = Rb: monoclinic, P21/n, a = 1409,67(8), b = 2211,63(14), c = 1627,16(10) pm, β = 101,030(5)°, Z = 4 (crystal data for M = NH4); ( 2 ): monoclinic, Pn, a = 1345,26(14), b = 773,82(4), c = 2095,10(20) pm, β = 94,439(8)°, Z = 2; ( 3 ): orthorhombic, Pnaa, a = 931,59(13), b = 2213,3(5), c = 2223,9(4) pm, Z = 4; ( 4 ): monoclinic, P21/n, a = 999,50(6), b = 1711,33(10), c = 1517,45(9) pm, β = 99,021(5)°, Z = 4; ( 6 ): triclinic, , a = 705,16(9), b = 1137,93(14), c = 1678,90(20) pm, α = 73,719(10), β = 79,782(10), γ = 83,669(10)°, Z = 2; ( 7 ): triclinic, , a = 1519,25(6), b = 1702,49(7), c = 2136,41(9) pm, α = 102,641(3), β = 101,989(3), γ = 91,911(3)°, Z = 2. 1 : 1 cations centered by M, [M(db18c6)]+, are found in the structures of ( 1 – 6 ). In contrast, the triple decker cation found in ( 7 ) is less common. The crystal structures are completed by mostly asymmetrically linear I3? anions.  相似文献   

8.
Phosphates MEuPO4 with M = K, Rb, and Cs were synthesized by the reduction of EuPO4 with alkali metal vapour under 1 Pa of argon pressure at 260–530°C in sealed tantalum or niobium lined glass tubes. All the compounds belong to the β-K2SO4 orthorhombic structure with a = 7.359(3), b = 9.630(4), c = 5.569(2) Å, V = 394.7(2) Å3 for KEuPO4, a = 7.462(3), b = 9.797(3), c = 5.649(2) Å, V = 413.0(2) Å3 for RbEuPO4 and a = 7.889(2), b = 10.099(2), c = 5.820(4) Å, V = 463.6(2) Å3 for CsEuPO4. Samples are stable and not hygroscopic in air at room temperature but hydrolyse to Eu5(PO4)3OH, hexagonal, a = 9.764(2), c = 7.262(2) Å, on heating in water and decompose to Eu3(PO4)2, hexagonal, a = 5.393(1), c = 19.838(3) Å, under argon at ca. 600°C. All the five compounds are paramagnetic.  相似文献   

9.
Zintl-Compounds with Gold: M3AuSn4 with M = K, Rb, Cs and M3AuPb4 with M = Rb, Cs Silver coloured, brittle single crystals of the compounds M3AuSn4 with M = K, Rb, Cs and M3AuPb4 with M = Rb, Cs were synthesized by reactions of alkali metal azides (MN3) with gold sponge and tin (lead) powder at T = 923 K. The structures of the isotypic compounds (space group Pmmn, Z = 2) were determined from X-ray single-crystal diffractometry data (see ‘‘Inhaltsübersicht”︁”︁). The Zintl-compounds M3AuE(14)4 with E(14) = Sn, Pb contain [AuE(14)4]-chains with P4-analogous E(14)4-tetrahedra which are connected by μ2-bridging gold atoms.  相似文献   

10.
Synthesis and Crystal Structures of NH4[Si(NH3)F5] and [Si(NH3)2F4] Single crystals of NH4[Si(NH3)F5] and [Si(NH3)2F4] are obtained by reaction of silicon powder with NH4HF2 in sealed Monel ampoules at 400°C. NH4[Si(NH3)F5] crystallizes with the tetragonal space group P4/n (no. 85) with a = 614.91(7) pm, c = 721.01(8) pm, Z = 2. Characteristic for the structure is the anionic octahedron [Si(NH3)F5]?. Si(NH3)2F4 crystallizes with the monoclinic space group P21/c (no. 14) with a = 506.9(1) pm, b = 728.0(1) pm, c = 675.9(1), β = 93,21(2)°, Z = 2. Trans-[Si(NH3)2F4] molecules are characteristic for this structure.  相似文献   

11.
Crystal Structure Determinations of Cs2NaCr(CN)6 and further Compounds A2BM(CN)6 (A = Rb, Cs; B = Na, K, Rb, NH4; M = Cr, Mn, Fe, Co): Tilting of Octahedra and Tolerance Factor of Cyano Cryolites The crystal structures of Cs2NaCr(CN)6 (space group P21/n, Z = 2; a = 763.2(1), b = 789.8(1), c = 1102.4(1) pm, β = 90.09(1)°) and of 9 isostructural cyano cryolites A2BM(CN)6 of the elements M = Cr, Mn, Fe, Co were determined by X‐rays at single crystals. The results, including data from the literature, were studied with respect to the interdependence of radii resp. bond lengths and cyano bridge angles M–CN–B resp. tilting of [M(CN)6] and [BN6] octahedra: The average tilt angles κ of the latter are within the range 13° ≤ κ ≤ 23° and increase linearly if the modified tolerance factor t (of range 0,87 ≥ t ≥ 0,78) decreases.  相似文献   

12.
Result of a study of how antimony trifluoride and fluoride complexes MSb2F7 (M = K, Rb, Cs, Tl, NH4), MSbF4 (M = Na, K, Rb, Cs, NH4), and M2SbF5 (M = Na, K, Rb, Cs, Tl, NH4) affect the growth of associations of marine bacteria and vital activity of marine alga Ulva Fenestrata are presented. The possible ways of using Sb(III) fluoride compounds are discussed.  相似文献   

13.
Preparation and Crystal Structure of (NH4)2[V(NH3)Cl5]. The Crystal Chemistry of the Compounds (NH4)2[V(NH3)Cl5], [Rh(NH3)5Cl]Cl2, and M2VXCl5 with M = K, NH4, Rb, Cs and X ? Cl, O (NH4)2[V(NH3)Cl5] crystallizes like [Rh(NH3)5Cl]Cl2 in the orthorhombic space group Pnma with Z = 4. The compounds are built up by isolated NH4+ or Cl? and complex MX5Y ions. The following distances have been observed: V? N: 213.8, V? Cl: 235.8–239.1, Rh? N: 207.1–208.5, Rh? Cl: 235.5 pm. Both structures differ from the K2PtCl6 type mainly in the ordering of the MX5Y polyhedra. The compounds M2VCl6 and M2VOCl5 with M = K, NH4, Rb, and Cs crystallize with exception of the orthorhombic K2VOCl5 in the K2PtCl6 type. The ordering of the MX5Y polyhedra in the compounds (NH4)2[V(NH3)Cl5], [Rh(NH3)5Cl]Cl2 and K2VOCl5 enables a closer packing.  相似文献   

14.
Preparation and Properties of the Alkali Hexaiodatogermanates(IV), M2[Ge(IO3)6] Germanium dioxide aquate and alkali nitrates react with iodic acid to yield alkali hexaiodatogermanates(IV), M2[Ge(IO3)6], (M = NH4, K, Rb, Cs). The unit-cell dimensions of the trigonal cell are for K2[Ge(JO3)6] a0 = 11.16 Å, c0 = 11.34 Å, z = 3. The compounds M[MIV(IO3)6] (MI = NH4, K, Rb, Cs, MIV = Ge, Sn, Pb, Ti, Zr, Mn) are isomorphous1).  相似文献   

15.
Synthesis and Crystal Structure of Alkali Metal Diamido Dioxosilicates M2SiO2(NH2)2 with M ? K, Rb and Cs SiO2 – α-quartz – reacts with alkali metal amides MNH2 (M ? K, Rb, and Cs) in molar ratios from 1:2 to 1:10 at 450°C ≤ T ≤ 600°C and P(NH3) = 6 kbar in autoclaves to diamidodioxosilicates M[SiO2(NH2)2]. Crystals of the colourless compounds which hydrolyze rapidly were investigated by x-ray methods. Following data characterize the structure determination on the isotypic compounds: The structures of the diamidodioxosilicates are closely related to the β? K2SO4 type. They contain isolated [SiO2(NH2)2]2? ions. K+ ions and hydrogen bridge bonds N? H…?O (with 2.68 Å ≤ d(N…?O) ≤ 2.78 Å for the K compound) connect the tetrahedral anions.  相似文献   

16.
New compounds of the general formula A4[Nb6Cl12(NCS)6](H2O)4 (A = K, Rb, NH4) were synthesized from Nb6Cl14 and ASCN in aqueous solutions. X-ray structure refinements were performed on single-crystal data of the three compounds. They are isotypic and crystallize with the space group P1 (Z = 1) and the lattice parameters: a = 877.9(3) pm, b = 1176.6(3) pm, c = 1187.0(3) pm, α = 114.29(1)°, β = 98.96(2)°, γ = 100.91(2)° for K4[Nb6Cl12(NCS)6](H2O)4 ( 1 ); a = 887.6(3) pm, b = 1184.0(4) pm, c = 1195.4(4) pm, α = 114.95(2)°, β = 98.84(2)°, γ = 101.31(2)° for Rb4[Nb6Cl12(NCS)6](H2O)4 ( 2 ) and a = 886.0(4) pm, b = 1181.1(6) pm, c = 1183.9(6) pm, α = 114.49(2)°, β = 99.48(3)°, γ = 101.53(1)° for (NH4)4[Nb6Cl12(NCS)6](H2O)4 ( 3 ). Each centrosymmetric [Nb6Cl12(NCS)6]4? ion of the isotypic compounds contains six terminal thiocyanate groups being bound to the corners of the octahedral niobium cluster through the nitrogen atoms (dNb? N = 221.5(6)–224.3(6) pm, bond angles Nb? N? C 168.6(5)–176.4(6)°). The [Nb6Cl12(NCS)6]4? ions are linked via A? S and A? Cl interactions with the A cations. Half of the cations occur to be disordered along two crystallographic sites.  相似文献   

17.
Crystal Structures of Octacyanomolybdates(IV). IV Dodecahedral [Mo(CN)8] Coordination of the Cyano‐Bridged Cobalt and Nickel Ammin Complexes MII2(NH3)8[Mo(CN)8] · 1.5 H2O (MII = Co, Ni) and Ni2(NH3)9[Mo(CN)8] · 2 H2O At single crystals of the hydrated cyano complexes Co2(NH3)8[Mo(CN)8] · 1.5 H2O (a = 910.0(4), b = 1671(2), c = 1501(1) pm, β = 93.76(6)°) and Ni2(NH3)8[Mo(CN)8] · 1.5 H2O (a = 899.9(9), b = 1654.7(4), c = 1488(1) pm, β = 94.01°), isostructurally crystallizing in space group P21/c, Z = 4, and of trigonal Ni2(NH3)9[Mo(CN)8] · 2 H2O (a = 955.1(1), c = 2326.7(7) pm, P31, Z = 3), X‐ray structure determinations were performed at 168 resp. 153 K. The [Mo(CN)8]4– groups of the three compounds, prepared at about 275 K and easily decomposing, show but slightly distorted dodecahedral coordination (mean distances Mo–C: 216.3, 215.4 and 216.1 pm). Within the monoclinic complexes the anions twodimensionally form cyano bridges to the ammin cations [M(NH3)4]2+ and are connected with the resulting [MN6] octahedra (Co–N: 215.1 pm, Ni–N: 209.8 pm) into strongly puckered layers. The trigonal complex exhibits a chain structure, as one [Ni(NH3)5]2+ cation is only bound as terminal octahedron (Ni–N: 212.0 pm). Details and the influence of hydrogen bridges are discussed.  相似文献   

18.
Preparation, Raman Spectra, and Crystal Structures of V2O3(SO4)2, K[VO(SO4)2], and NH4[VO(SO4)2] The oxo-sulfato-vanadates(V) V2O3(SO4)2, K[VO(SO4)2], and NH4[VO(SO4)2] have been prepared as crystals suitable for X-ray structure determination. In all structures sulfate acts as an unidentate ligand only toward a single vanadium atom. The structure of V2O3(SO4)2 consists of a threedimensional network of pairs of cornershared VO6 octahedra with one terminal oxygen atom each, and SO4 tetrahedra. All oxygen atoms of the sulfate ions are coordinated. NH4[VO(SO4)2] and K[VO(SO4)2] are isostructural. VO6 octahedra with one terminal oxygen atom and pairs of sulfate tetrahedra form infinite chains by corner sharing. The chains are weakly interlinked to layers. The sulfate ions are distorted towards planar SO3 molecules and single oxygen atoms attached to vanadium. This structural detail gives an explanation for the mechanism of the reversible reaction K[VO(SO4)2] ? K[VO2(SO4)] + SO3 at 400°C. Raman spectra of the compounds have been recorded and interpreted with respect to their structures. Crystal data: V2O3(SO4)2, monoclinic, space group P21/a, a = 947.2(4), b = 891.3(3), c? 989.1(4) pm, β = 104.56(3)°, Z = 4, 878 unique data, R(Rw) = 0.039(0,033); K[VO(SO4)2], orthorhombic, space group P212121, a = 495.3(2), b = 869.6(9), c = 1 627(1)pm, Z = 4, 642 unique data, R(Rw) = 0,11(0,10); NH4[VO(SO4)2], orthorhombic, space group P212121, a = 495.3(1), b = 870.0(2), c = 1 676.7(4)pm, Z = 4, 768 unique data, R(Rw) = 0.088(0.083).  相似文献   

19.
Alkali Metal Bismuthides ABi and ABi2 — Synthesis, Crystal Structure, Properties The Zintl phases ABi (A = K/Rb/Cs; monoclinic, space group, P21/c, a = 1422.3(2)/1474.2(2)/1523.7(3), b = 724.8(1)/750.2(1)/773.7(1), c = 1342.0(2)/1392.1(2)/1439.9(2) pm and β = 113.030(3)/113.033(2)/112.722(3)°, Z = 16) crystallize with the β‐CsSb structure type containing chains of two‐connected Bi atoms. Hence, and according to calculated electronic structures, they are semiconductors with small band gaps of approx. 0.5 eV. In contrast, the compounds ABi2 (A = K/Rb/Cs; cubic, space group Fd3¯m, a = 952.1(2)/962.4(8)/972.0(3) pm, Z = 8) belong to the Laves phases, showing a typical metallic electrical conductivity and no band gaps.  相似文献   

20.
Two Mercuric Ammoniates: [Hg(NH3)2][HgCl3]2 and [Hg(NH3)4](ClO4)2 [Hg(NH3)2][HgCl3]2 ( 1 ) is obtained by saturating an equimolar solution of HgCl2 and NH4Cl with Hg(NH2)Cl at 75 °C. 1 crystallizes in the orthorhombic space group Pmna with a = 591.9(1) pm, b = 800.3(1) pm, c = 1243.3(4) pm, Z = 2. The structure consists of linear cations [Hg(NH3)2]2+ and T‐shaped anions [HgCl3]. The coordination sphere of mercury is ?effectively”? completed to compressed hexagonal bipyramids and distorted octahedra, respectively. Single crystals of [Hg(NH3)4](ClO4)2 ( 2 ) are obtained by passing gaseous ammonia through a solution of mercuric perchlorate, while the solution was cooled to temperatures below 10 °C. 2 crystallizes in the monoclinic space group P21/c with a = 791.52(9) pm, b = 1084.3(2) pm, c = 1566.4(2) pm, β = 120.352(1)°, Z = 4. The structure consists of compressed [Hg(NH3)4]2+ tetrahedra and perchlorate anions. The packing of the heavy atoms Hg and Cl is analogous to the baddeleyite (α‐ZrO2) type of structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号