首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polymerization of vinyl monomer initiated by poly-p-vinylphenol (PVPh) in NaOH aqueous solution was carried out at 85°C with shaking. Methyl methacrylate (MMA) was polymerized, whereas styrene and acrylonitrile were not. PVPh, which is dissociated into phenolate form (PVPh?Na+) in NaOH aqueous solution, was effective for the polymerization. The effects of the amounts of MMA, PVPh, NaOH, and H2O on the conversion of MMA were studied. The rate of polymerization of MMA increased with an increase in the molecular weight of PVPh-Na. The overall activation energy was estimated as 54 kJ mol?1. The polymerization proceeded through a radical mechanism. The addition of tetra-n-butylammonium bromide increased the rate of polymerization.  相似文献   

2.
The polymerization of vinyl monomer initiated by an aqueous solution of poly(vinylbenzyltrimethyl)ammonium chloride (Q-PVBACI) was carried out at 85°C. Styrene, p-chlorostyrene, methyl methacrylate, and i-butyl methacrylate were polymerized, whereas acrylonitrile and vinyl acetate were not. The effects of the amounts of vinyl monomer, Q-PVBACI, and water on the conversion of vinyl monomer were studied. The overall activation energy in the polymerization of styrene was estimated as 79.1 kJ mol?1. The polymerization proceeded through a radical mechanism. The selectivity of vinyl monomer was discussed by “a concept of hard and soft hydrophobic areas and monomers.”  相似文献   

3.
A study of the photopolymerization of vinyl monomers in the presence of tetramethyltetrazene (TMT) was made. TMT was found to act as an effective sensitizer. In the photopolymerization of vinyl monomers such as methyl methacrylate or styrene the rate of polymerization was expressed by the equation: Rp = k[TMT]1/2[monomer]. The chain-transfer constant of TMT under ultraviolet irradiation was estimated to be 3.8 × 10?2 for the above monomers. A linear correlation was found to exist between the reactivity of dimethylamino radical toward the vinyl monomers and e values for the corresponding monomers.  相似文献   

4.
The initiation mechanism on the radical polymerization of vinyl monomers by polyethyleneglycol (PEG-300) in aqueous solution was studied. The initiating radical species were determined by means of the spin trapping technique. They were concluded to be generated by the hydrogen atom transfer from the monomer adsorbed at the ether group of PEG-300 to the free monomer.  相似文献   

5.
Benzaldehyde (PhCHO) is found to be able to initiate the radical polymerization of methyl methacrylate (MMA). The rate of polymerization is expressed by the following equation: Rp = const[PhCHO]0.5[MMA]1.5. The overall activation energy is estimated to be 56.3 kJ mole?1. The mechanism of polymerization is discussed.  相似文献   

6.
7.
Lenka  S.  Nayak  P. L.  Dash  S. B.  Ray  S. 《Colloid and polymer science》1983,261(1):40-44
Colloid and Polymer Science - The kinetics of aqueous polymerization of acrylamide and methacrylamide initiated by potassium peroxydiphosphate has been investigated. The kinetic orders with respect...  相似文献   

8.
The kinetics of the aqueous polymerization of acrylonitrile and methyl methacrylate initiated by the peroxydiphosphate-thioglycollic acid redox system was investigated at 40, 45, 50, 55, and 60 °C. The rates of polymerization were measured at different concentrations of oxidant, activator and monomer. From the results, it was concluded that the polymerization reaction is initiated by an organic free radical arising from the peroxydiphosphate-thioglycollic acid system and termination by mutual type. On the basis of experimental observations of the dependence of the rate of polymerization,R p on various variables, a suitable kinetic scheme has been proposed.  相似文献   

9.
The polymerization of acrylonitrile was studied with a peroxydiphosphate–ascorbic acid redox system as the initiator. The rate of polymerization increased with increasing peroxydiphosphate concentration and the initiator exponent was computed to be 0.5. It also increased with increasing monomer concentration and the monomer exponent was computed to be unity. The reaction was carried out at three different temperatures and the overall activation energy was computed to be 4.6 kcal/mol. The effect of certain surfactants on the rate of polymerization was investigated and a suitable kinetic scheme is described.  相似文献   

10.
11.
The polymerization of acrylonitrile was carried out using peroxydiphosphate-cyclohexanol redox system in the presence of silver ion. The rate of polymerization increases with increasing peroxydiphosphate concentration and the initiator exponent was computed to be 0.5. The rate of polymerization increases with increasing monomer concentration and the monomer exponent was computed to be unity. The plot of Rp vs [Ag+]1/2 was linear, indicating 0.5 order with respect to [Ag+]. The reaction was carried out at three different temperatures and the overall activation energy was calculated to be 7.60 kcal/mol. The effect of certain surfactants on the rate of polymerization has been investigated and a suitable kinetic scheme has been pictured.  相似文献   

12.
13.
Polymerization of methyl methacrylate and other vinyl monomers was studied in the presence of oligoamide (?-aminocaproic acid, its dimer, trimer, tetramer, and pentamer) and cupric ion in aqueous media. The polymerization was found to be of free-radical character and selective for the type of vinyl monomer. Carbon tetrachloride can accelerate the polymerization. The initiation mechanism of the polymerization is discussed. Spectroscopic measurements were indicative of formation of 1:1 complex between oligoamides and cupric ion in aqueous NaClO4 solution. Some chemical and physical properties of the resulting polymers were measured.  相似文献   

14.
15.
The polymerization of acrylonitrile (AN) initiated by the system of tetramethyl tetrazene (TMT) and bromoacetic acid (BA) in dimethylformamide (DMF) was studied. The TMT–BA system could initiate the polymerization of AN more easily than TMT alone. The polymerization was confirmed to proceed through a radical mechanism. The initial rate of polymerization Rp was expressed by the equation: Rp = [TMT]0.62-[BA]0.5[AN]1.5. The overall activation energy for the polymerization was estimated as 9.4 kcal/mole. In the absence of monomer, the reaction of TMT with BA in DMF was also studied kinetically by measuring the evolution of nitrogen gas. The reaction was first-order in TMT and first-order in BA; the rate data at 49°C were k2 = 9.1 × 10?2l./mole-sec., ΔH? = 17.0 kcal/mole, and ΔS? = ? 6.6 eu. In addition, the treatment of TMT with BA in benzene led to the formation of tetramethylhydrazine radical cation, which was identified by its ESR spectrum. On the other hand, the relatively strong interaction between TMT and DMF was observed by absorption spectrophotometry.  相似文献   

16.
17.
The polymerization of methyl methacrylate in benzene was initiated by benzoyl peroxide and examined by kinetic analysis particularly from the point of view of primary radical termination. It is concluded that the velocity constant for dissociation of the benzoyloxy radical to give the phenyl radical is affected by the nature of the medium.  相似文献   

18.
The polymerization of methyl methacrylate (MMA) was carried out with the system polyethyleneglycol (PEG), copper(II) chloride and water at 85°. The effects of the amount of each component on the conversion of MMA were studied. Some polymerization occurred even if copper(II) ion was not present. It is suggested that there were three reactions: (1) polymerization initiated by the complex of PEG, copper(II) ion and water, (2) polymerization by PEG in water, (3) in the water phase, inhibition by copper(II) ion. The polymerization proceeded through a radical mechanism.  相似文献   

19.
The aqueous polymerization of acrylic acid and acrylamide initiated by peroxydiphosphate–sodium thiosulfate redox system was investigated within the temperature range of 25–35°C. The rates of polymerization were measured at different concentrations of oxidant, activator and monomer. The monomer and the initiator exponents were evaluated to be 1.12 and 0.51. The rate of polymerization decreases with increasing thiosulfate concentration. On the basis of the experimental observation of the dependence of the rate of polymerization, Rp, on various variables, a suitable kinetic scheme has been proposed and the rate parameters have been evaluated.  相似文献   

20.
Acrylonitrile was polymerized using peroxydiphosphate-Fe(II) and peroxydiphosphate-Mn(II) redox systems within the range 40–60°. The kinetic orders with respect to peroxydiphosphate, metal ion and monomer were close to 0.5, 0.5 and 1.0, respectively. Overall activation energies were computed and a suitable kinetic scheme suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号