首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formation of Organosilicon Compounds. 103. Formation and Structure of cis and trans 2,4-Dichloro-2,4-bis(trimethylsilyl)-1,1,3,3-tetramethyl-1,3-disilacyclobutane The reaction of Me3Si? CCl2? SiMe2Cl with LiBu in THF yields 1,1,3,3-Tetramethyl-2,4-bis(trimethylsilyl) 1,3-disilabicyclo[1.1.0]butane. The product of the first reaction stage is Me3Si? CCl(Li)-SiMe2Cl. The 1,3-Disilacyclobutane 2 and 3 were isolated, when Me3Si? CCl2? SiMe2Cl was treated with LiBu in Et2O. This way the proof is given that 2 and 3 are intermediates of the formation of product 1 . The further products are 4 and 5 (CCl in 2 and 3 substituted by CH) and Me3Si? CH2? C(SiMeCl)2SiMe3. 2 crystallizes orthorhombically in the space group Fdd 2 (no. 43) with a = 2149.1 pm, b = 2229.2 pm, c = 1763.6 pm and Z = 16 molecules per cell. The central ring of disilacyclobutane is slightly folded (17.9°). The configuration of the C-Atoms in this four membered ring gets closer to a sp2 configuration built up by three Si? C bonds. The Cl-atoms approximately have orthogonal positions to these CSi3 arrangements. The extension of the C? Cl bonds (184.6 pm) and the mutual approximations of the Cl-atoms in the cis-position indicate a high reactivity of the molecule.  相似文献   

2.
Formation of Organosilicon Compounds. 112. The Influence of Reaction Conditions on the Reaction of (Cl3Si)2CCl2 with Silicon. The Structures of 2,2,3,3,5,5,6,6-Octachloro-1,4-bis(trichlorosilyl)-2,3,5,6-tetrasilabicyclo[2.1.1]-hexane and 1,1,3,4,6,6-Hexakis(trichlorosilyl)hexatetraene While reactions of (Cl3Si)2CCl2 1 with Si(Cu) in a fluid bed at 320°C exclusively yield products by silylation of the CCl2 group in 1 does the reaction in a stirred bed preferrably give rize to chlorosilanes containing C? C double and triple bonds. Compounds 5, 6, 7, 8 and 9 in Tab. 1 belong to the first group, whereas 3 and 4 belong to the second one. The reaction of 1 with elemental copper under dehalogenation at carbon produces 3, 4 and 11 . In the reaction of 1 with CaSi2 no additional Si? C bonds are formed, exclusively chlorosilanes with multiple C? C bonds as 3, 4 and 10 were found besides of SiCl4. The bicyclo[2.1.1]hexane 6 (Tab. 1) crystallizes monoclinically in the space group C2/c (no. 15) with a = 1557.8, b = 857.4, c = 1727.3 pm, β = 104.34° und Z = 4 molecules per unit cell; the hexatetraene 10 (Tab. 1) crystallizes monoclinically in the space group C2/m (no. 12) with a = 1189.6, b = 1433.8, c = 983.5 pm, β = 98.75° pm, and Z = 2 molecules per unit cell. The skeleton of 6 is a system of high bond stress with 2-C2 symmetry. The strongly folded (138.8°) four-membered ring (sum of angles = 344.2°) and the presence of both a Si? Si bond length of 238.2 pm and a Si? Si non-bonding distance of 255.1 pm are remarkable aspects of this feature. The mean bond lengths in the bicyclic compound were found to be d(Si? C) = 190.9 pm and d(Si? C) = 185.1 pm for exo- and endocyclic bonds, respectively. The skeleton of 10 is of the symmetry 2/m-C2h. The six-membered chain is plane. The central C? C single bond length and the mean distance of the cumulated double bonds are 148.6 pm and 130.5 pm, respectively.  相似文献   

3.
Formation of Organosilicon Compounds. 94. Crystal Structure of Hexaphenyltrisilacyclohexane Si3C39H36 1.1.3.3.5.5-Hexaphenyl-1.3.5-trisilacyclohexane crystallizes monoclinically in the space group P21/n (No. 14) with a = 1718.3 pm, b = 1769.2 pm, c = 1091.4 pm, β = 90.72° and Z = 4 molecules per unit cell. The trisilacyclohexane sceleton is present in a flattened twist boat conformation with mean bond angles of 110.0° at the Si atoms and 117.9° at the C atoms, respectively. The mean bond lengths are d(Si? C) = 187.1 pm in the six membered ring and 187.9 pm to the substituents.  相似文献   

4.
The steric effects of substituents on five‐membered rings are less pronounced than those on six‐membered rings because of the difference in bond angles. Thus, the regioselectivities of reactions of five‐membered heteroarenes that occur with selectivities dictated by steric effects, such as the borylation of C?H bonds, have been poor in many cases. We report that the silylation of five‐membered‐ring heteroarenes occurs with high sterically derived regioselectivity when catalyzed by the combination of [Ir(cod)(OMe)]2 (cod=1,5‐cyclooctadiene) and a phenanthroline ligand or a new pyridyl‐imidazoline ligand that further increases the regioselectivity. The silylation reactions with these catalysts produce high yields of heteroarylsilanes from functionalization at the most sterically accessible C?H bonds of these rings under conditions that the borylation of C?H bonds with previously reported catalysts formed mixtures of products or products that are unstable. The heteroarylsilane products undergo cross‐coupling reactions and substitution reactions with ipso selectivity to generate heteroarenes that bear halogen, aryl, and perfluoroalkyl substituents.  相似文献   

5.
In the crystal structure of C15H20O2, mol­ecules are associated by intermolecular hydrogen bonds between the hydroxy function and a keto group [O?O 2.770 (2) Å], forming chains along the [100] direction in the crystal. Both six‐membered rings in the decalin unit adopt envelope conformations; one section of the mol­ecule, encompassing the extended conjugation of a C=C double bond with an enone functionality [C=C—C=O = 175.6 (2)° and C=C—C=C = 176.6 (2)°], is flat, whilst the rest of the mol­ecule is folded relative to the constrained part. The stereochemistry was determined from the R‐(–)‐carvone starting material.  相似文献   

6.
Cycloaddition Reactions of Trifluoromethyl Isocyanide with Diphosphenes. Synthesis and Structure of the new 2-Phosphinidene-1,3-azaphospholidine Derivative [2 + 1] Cycloaddition reactions of trifluoromethyl isocyanide 1 and methylisocyanide 2 with the diphosphene R? P?P? R 3a ( a R ? C[Si(CH3)3]3) yield the three membered heterocyclic diphosphirane imines 4 and 5 , respectively. Whereas the trifluoromethyl substituted compound 4 is thermally very stable, the methylsubstitued derivative 5 slowly looses methyl isocyanide reforming the diphosphene 3a . In the reaction of 1 with R? P?P? R 3b [ b R = 2,4,6-(t-Bu)3C6H2] no evidence for the formation of a three membered ring compound could be obtained. The five membered heterocycle 3-(2,4,6-Tri-t-butylphenyl)-2-[2,4,6-tri-t-butylphenyl)-phosphinidene]-1-trifluoromethyl-4, 5-bis(trifluoromethylimin)-1,3-azaphospholidine 6 was isolated as the only product together with unreacted 3b . The structure of 6 , triclinic, P1 , a = 1081.1(8), b = 1463.1(11), c = 1643.6(5)pm, α = 64.01(6), β = 81.22(4), γ = 74.04(5)°, Z = 2, R = 0.080, Rw = 0.085, has been elucidated by X-ray diffraction.  相似文献   

7.
The exhaustive trichlorosilylation of hexachloro‐1,3‐butadiene was achieved in one step by using a mixture of Si2Cl6 and [nBu4N]Cl (7:2 equiv) as the silylation reagent. The corresponding butadiene dianion salt [nBu4N]2[ 1 ] was isolated in 36 % yield after recrystallization. The negative charges of [ 1 ]2? are mainly delocalized across its two carbanionic (Cl3Si)2C termini (α‐effect of silicon) such that the central bond possesses largely C=C double‐bond character. Upon treatment with 4 equiv of HCl, [ 1 ]2? is converted into neutral 1,2,3,4‐tetrakis(trichlorosilyl)but‐2‐ene, 3 . The Cl? acceptor AlCl3, induces a twofold ring‐closure reaction of [ 1 ]2? to form a six‐membered bicycle 4 in which two silacyclobutene rings are fused along a shared C=C double bond (84 %). Compound 4 , which was structurally characterized by X‐ray crystallography, undergoes partial ring opening to a monocyclic silacyclobutene 2 in the presence of HCl, but is thermally stable up to at least 180 °C.  相似文献   

8.
Structural Chemistry of Phosphorus Containing Chains and Rings. 11. Crystal and Molecular Structures of the Two Stereoisomers of Tetraphospha-silaspiro[2.2]pentane (PBut)2Si(PBut)2 The spirocyclic compound 1,2,4,5-tetra-tert-butyl-1,2,4,5-tetraphospha-3-silaspiro[2.2]pentane exists in tow diastereomers of point symmetry 4 and 2. The isomer with symmetry 4 even in the solid crystallizes tetragonally in I41/a with a = 1247.0, c = 1505.5 pm and Z = 4. The isomer of fairly exact symmetry 2 crystallizes triclinically in P1 with a = 612.8, b = 996.3, c = 1017.2 pm, α = 75.63, β = 72.38, γ = 88.71° and Z = 1. In this disordered structure the surroundings of Si is slightly distorted due to the influence of the substituents. The (average) bond lengths are (4 , 2): d(Si? P) = 220.09(9), 221.5(5); d(P? P) = 225.5(2), 224.2(5); d(P? C) = 189.4(3), 190(2); d(C? C) = 151.4(4), 152(3) pm. The geometry of the substituents in both isomers is quite normal.  相似文献   

9.
Three‐ and five‐membered rings that bear the (Si‐C‐S ) and (Si‐C‐C‐C‐S ) unit have been synthesized by the reactions of L SiCl ( 1 ; L =PhC(NtBu)2) and L′ Si ( 2 ; L′ =CH{(C?CH2)(CMe)(2,6‐iPr2C6H3N)2}) with the thioketone 4,4′‐bis(dimethylamino)thiobenzophenone. Treatment of 4,4′‐bis(dimethylamino)thiobenzophenone with L SiCl at room temperature furnished the [1+2]‐cycloaddition product silathiacyclopropane 3 . However, reaction of 4,4′‐bis(dimethylamino)thiobenzophenone with L′ Si at low temperature afforded a [1+4]‐cycloaddition to yield the five‐membered ring product 4 . Compounds 3 and 4 were characterized by NMR spectroscopy, EIMS, and elemental analysis. The molecular structures of 3 and 4 were unambiguously established by single‐crystal X‐ray structural analysis. The room‐temperature reaction of 4,4′‐bis(dimethylamino)thiobenzophenone with L′ Si resulted in products 4 and 5 , in which 4 is the dearomatized product and 5 is formed under the 1,3‐migration of a hydrogen atom from the aromatic phenyl ring to the carbon atom of the C? S unit. Furthermore, the optimized structures of probable products were investigated by using DFT calculations.  相似文献   

10.
Structural Chemistry of Phosphorus Containing Chains and Rings. 16. Molecular and Crystal Structure of the Triisopropylundecaphosphane P11(i-Pr)3 The compound 4,7,11-triisopropyl-pentacyclo[6.3.0.02.6.03.10.05.9]undecaphosphane, C9H21P11, crystallizes triclinically in the space group P1 with a = 1 045.3 pm, b = 1 057.2 pm, c = 1 075,0 pm, α = 101.00°, β = 98.89°, γ = 112.27° and Z = 2. The main structural feature is a phosphorus skeleton with approximate symmetry D3 composed of six five-membered rings which are asymmetrically substituted by the isopropyl groups. The (average) bond lengths are d(P? P) = 221.6 pm, d(P? C) = 187.5 pm, d(C? C) = 151.4 pm, d(C? H) = 108 pm with 217.6 ≤ d(P? P) ≤ 226.4 pm. The geometry of the substituents is quite normal.  相似文献   

11.
Synthesis and Crystal Structure of [Se3N2Cl]+GaCl4? [Se3N2Cl]+GaCl4? has been prepared by the reduction of [Se2NCl2]+GaC14? with SbPh3 in CH2Cl2 solution, forming red crystals, which were characterized by an X-ray structure determination. Space group P21/n, Z = 4, 1640 observed unique reflections, R = 0.050. Lattice dimensions at ? 80 °C: a = 929.4(1), b= 1078.8(1), c = 1135.7(1) pm, β = 92.026(9)°. The cations from nearly planar Se3N2 five membered rings with Se? N bond lengths from 170 to 176pm and a Se? Se bond of 242.2 pm. One of the selenium atoms is bonded to the chlorine atom.  相似文献   

12.
Molecular and Crystal Structure of 1,4-Bis[tris(tetrahydrofuran)lithium]-octaphenyltetrasilane 1,4-Dilithium-octaphenyltetrasilane prepared from octaphenyl-cyclo-tetrasilane and lithium in tetrahydrofuran (THF) [4], can be isolated from tetrahydrofuran/n-pentane as an adduct with six molecules of tetrahydrofuran per formula unit. The orange-red compound crystallizes in the triclinic space group P1 {a = 1159.6(3); b = 1268.4(2); c = 1367.8(3) pm; α = 92,23(2)° β = 113.79(2)° γ = 111.62(2)° at ?5 ± 3°C; Z = 1}. An x-ray structure determination (Rw = 0.046) shows the existence of a centrosymmetric molecule with an extended planar Li? Si4? Li unit; either lithium atom is bound to silicon and to the oxygen atoms of three molecules of tetrahydrofuran. Characteristic bond lengths and angles are: Li? Si 271; Si? Si 241 and 243; Si? C 190 to 192 pm; Li? Si? Si 126°; Si? Si? Si 127°. 29Si and 7Li n.m.r. measurements at low temperatures indicate the presence of three different adducts.  相似文献   

13.
Structural Chemistry of Phosphorus-containing Chains and Rings. 1. Crystal Structure of the Diphosphasilirane (t-BuP)2SiPh2 The three-membered P2Si-heterocycle 1, 2-di-tert-butyl-3, 3-diphenyl-1, 2, 3-diphosphasilirane (t-BuP)2SiPh2 crystallizes monoclinic in the space group P21 with a = 1041.2 pm, b = 882.3 pm, c = 1158.1 pm, β = 91.33° and Z = 2 formula units. A special structural feature is the regular triangle built up by two P and one Si. Therefore the endocyclic bond angle at Si is as low as 60°. The average bond lengths are P? P = 222.6 pm, P? Si = 222.5 pm, P? C = 190.8 pm, Si? C = 186.6 pm, (C? C )ph = 139.0 pm, ( C? C )t-Bu = 151.7 pm. The geometry of the substituents phenyl and tert-butyl is quite normal, the last ones are slightly disordered.  相似文献   

14.
Chelate Complexes of Rhenium Tetrachloride. The Crystal Structures of ReCl4(DME) and ReCl4(DPPE) · Tolan Bright green crystals of ReCl4(DME) have been prepared by the reaction of rhenium pentachloride with dimethoxyethane (DME) in dichloromethane. ReCl4(DPPE) · tolan was obtained in form of red crystals by the reaction of the alkyne complex [ReCl4(Ph? C?C? Ph)(POCl3)] with bis(diphenylphosphino)ethane (DPPE) in dichloromethane. The complexes were characterized by X-ray structure determinations. ReCl4(DME): Space group I4 2d, Z = 8, 829 observed unique reflexions, R = 0.022. Lattice dimensions at 19.5°C: a = b = 960.60(6), c = 2337.2(6) pm. The complex forms monomeric molecules with DME as chelating ligand; the Re? O bond lengths are 213.1 pm. The chlorine atoms, arranged in trans position to the chelating ligand, have slightly shorter Re? Cl bonds than the chlorine atoms in cis position (232,1 pm). ReCl4(DPPE) · tolan: Space group P21/n, Z = 4,4313 observed unique reflexions, R = 0.040. Lattice dimensions at ?80°C: a = 1095.7(1), b = 1764.2(2), c = 1898.0(2) pm, β = 99.229(8)°. The compound consists in form of monomeric molecules [ReCl4(DPPE)] and diphenylacetylene molecules, which are incorporated in the lattice. The two phenyl rings of the tolan molecules are twisted towards each other along the C? C axis with a dihedral angle of 21°. The DPPE molecules are bonded to the rhenium atom in a chelating fashion with medium Re? P lengths of 250.4 pm. The chlorine atoms, arranged in trans position to this ligand, with Re? Cl bond lengths of 234.5 pm are slightly longer than the Re? Cl bonds in cis position with 232.3 pm.  相似文献   

15.
Cyclic Diazastannylenes. XXVIII. Inorganic Polycyclic Compounds from the Reaction of Bis(amino)stannylene or Iminostannylene with SnCl2, SnBr2, and tert-Butoxitin(II) Chloride or Bromide The cyclic bis(amino)stannylene 1 may react with tert-butoxitin(II) chloride or bromide yielding a Lewis acid-base adduct 4 resp. 5 , in which the two molecules are held together via N→Sn (233.8(3) pm) and O→Sn (215.1(2) pm) bonds. The resulting adduct 4 contains therefore two four membered rings sharing one common edge as found by X-ray structure determination. If 1 is allowed to react with SnCl2 or SnBr2, the salts Me2Si(NtBu)2Sn2Br+Sn2Br5? ( 7 ) are formed. Structure analysis reveals the cations in 6 and 7 to be very similar: SnCl+ and SnBr+ are coordinated by the “trihapto ligand” 1 in a way resulting a polycyclic SiN2Sn2X-arrangement. To a central Sn2N2 tetrahedron Si and halogen X are added occupying and bridging two opposite edges (mean values: N? Sn = 232(5) ( 6 ), N? Sn = 230(2) ( 7 ), Sn? C1 = 265(1), Sn? Br = 275(1) pm). The reaction intermediate (SnNtBu)2 adds to SnCl2 to form the crystalline polymer ( tBuN)2Sn3C12 (8) . X-ray structure determination reveals the solid to be built up by one-dimensional chains of polycyclic Sn3(NtBu)2C13 sharing two chlorine atoms with neighbouring units. The unit Sn3(NtBu)2C13 can be visualized as an equilateral triangle of chlorine atoms, on which a smaller triangle of tin atoms is superimposed; the corners of the smaller triangle being located in the middle of the larger triangle's edges. The tin atoms are bipyramidally coordinated by two N? tBu-groups thus forming a nearly perfect Sn3N2s trigonal bipyramide (Sn? N = 222.7(3) pm). Two chlorine atoms of the triangle are connected to neighbouring units, the chlorine atoms thus attain an unusual nearly square-planar coordination sphere (Sn? Cl(mean) = 308(5) pm). The tertbutyl groups at the nitrogen atoms “screen” the inorganic part of the structure leading to a layer structure.  相似文献   

16.
Chemistry and Structural Chemistry of Phosphides and Polyphosphides. 15. Gadoliniumpentaphosphide GdP5 GdP5 is formed by heating (550–800°C) of Gadolinium powder and red phosphorus with small amounts of iodine. GdP5 crystallizes monoclinic in the space group P21/m with a = 4.928, b = 9.446, c = 5.370 Å, β = 102.58° and Z = 2 formula units. GdP5 is isotypic to NdP5. The bond lengths vary between 2.161 and 2.211 Å for the P? P bonds and 2.947 and 3.014 Å for the Gd? P bonds. The 2-dimensional network of P atoms is related to connected six membered rings (boat conformation) with specific defects. GdP, is paramagnetic with μ = 7.83 B.M.  相似文献   

17.
Acyl- and Alkylidenephosphines. XXIII. Synthesis and Structure of [Bis(trimethylsilylsulfano)methylidene]phosphines Analogous to the phenyl derivative 1a [2] tert-butyl- 1b , mesityl- 1c and methylbis-(trimethylsilyl)phosphine 1 d react with carbon disulfide to give the corresponding [bis(trimethylsilylsulfano)methylidene]phosphines 4 . Only in case of the mesitylphosphine 1 c the intermediate compounds 2 and 3 could be detected by n.m.r. spectroscopic methods; thermally unstable [bis(trimethylsilylsulfano)methylidene]methylphosphine 4 d dimerizes rapidly [1]. [Bis(trimethylsilylsulfano)methylidene]phenylphosphine 4 a crystallizes in the monoclinic centrosymmetric space group P21/c with following dimensions of the unit cell determined at ?95 ± 3°C: a = 1386.4(8); b = 1036.0(7); c = 1281.7(8) pm; ß = 101.23(4)°; Z = 4. An X-ray structure determination (R = 0.032) proves the constitution of this compound as already derived from its nmr spectra. Characteristic bond lengths and angles are: P?C 170; P? C(phenyl) 183; C? S 176; S? Si 219 pm; C? P?C 107; P?C? S 124 and 120; S? C? S 116 and C? S? Si 111°.  相似文献   

18.
Contributions to the Chemistry of Silicon Sulphur Compounds. XXXIII. Structure of Bis (triphenylsilyl)sulphide The condensation of triphenylsilanethiol yielded bis(triphenylsilyl)sulphide ( 1 ). The compound is remarkable resistent to hydrolysis. 1 crystallizes monoclinically [P21/n (No. 14): a = 1707.8 pm; b = 1454.6 pm; c = 1225.0 pm; β = 97.27°; Z = 4; 4470 h k l; R = 0.053]. The molecule is bent with a bond angle Si? S? Si = 112.0°. The mean bond distances Si? S and Si? C are 215.2 pm and 187.4 pm, respectively. Some structural details are discussed.  相似文献   

19.
In the title compound, C8H8N2OS, strong intramolecular N—H⋯O hydrogen bonds [N⋯O = 2.669 (3) and 2.618 (3) Å] form almost planar six‐membered rings and enforce the conformation of the mol­ecule. Two kinds of intermolecular N—H⋯S hydrogen bonds [N⋯S = 3.309 (3)–3.456 (2) Å] between two symmetry‐independent mol­ecules form consecutive dimers that expand in ribbons along the [100] direction.  相似文献   

20.
The structure of the adduct of eucarvone with nitro­so­benzene, C16H19NO2, is reported. The [3.2.2] bicyclic system corresponds to two seven‐membered rings in boat and distorted chair conformations and a six‐membered ring that adopts a distorted boat conformation. No conjugation is observed between the phenyl group and the N—O system. The packing is directed mainly by a C?O hydrogen bond, C—H?O‐(1 ? x, ?y, z) and by intermolecular C—H?π interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号