首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Degradation behavior has been compared for PVB, five VB-MMA copolymers which span the composition range, PMMA, and PVC by using thermogravimetry in dynamic nitrogen and thermal volatilization analysis (TVA) under vacuum for programmed heating at 10°C/min. Volatile products have been separated by subambient TVA and identified. PVB is substantially less stable than PVC but shows inmost respects analogous degradation behavior. The introduction of VB into the PMMA chain leads to intramolecular lactonization with release of methyl bromide at temperatures a little above 100°C; after this reaction is complete, however, the polymer is more stable toward volatilization than PMMA. Copolymers with moderate and high VB contents also lose hydrogen bromide. Carbon dioxide is a significant product at intermediate compositions. The variation of product distribution with copolymer composition is discussed in relation to the several reactions involved and comparisons are made with VC-MMA copolymers. PVB-PMMA blends snow some features of degradation behavior in common with the PVC-PMMA system but also very important differences. The effect of PVB is only to stabilize the PMMA; the mechanism is discussed. The role of PVB as an additive and VB as a comonomer for fire-retardant PMMA compositions is briefly considered in relation to earlier studies.  相似文献   

2.
Thermal stability and degradation behaviour have been studied for PVB and VB-MVK copolymers spanning the whole composition range, using thermogravimetric analysis. The reactivity ratios in the radial copolymerization were determined by using an NMR technique, leading to ri(VB) = 3.6 ± 0.2 and r2(MVK) = 0.2 ± 0.1. The introduction of MVK units into the VB chain leads to an interaction with release of methyl bromide. The stability of the copolymers increases with increasing MVK concentration.  相似文献   

3.
The thermal degradation of a series of copolymers of vinyl acetate and methyl acrylate and the two homopolymers poly(vinyl acetate) and poly(methyl acrylate) obtained using Ce(IV) as initiator has been investigated using differential thermal analysis (DTA) and thermogravimetry (TGA) in dynamic nitrogen. The kinetic parameters E, n, and A have been obtained following several methods of thermogravimetric analyses. The stability increases as the methyl acrylate content in the copolymer composition increases. The incorporation of 5 mol % of vinyl acetate in the copolymer produces a marked decrease in stability compared to the homopolymer poly(methyl acrylate). There is evidence for an intramolecular lactonization process in vinyl acetate—methyl acrylate copolymers.  相似文献   

4.
Poly(monoitaconates) containing octyl, decyl and dodecyl groups and random monoalkylitaconate-co-vinylpyrrolidone copolymers were studied by thermogravimetric analysis. Copolymers of mono-n-octylitaconate (MOI), mono-n-decylitaconate (MDI), and mono-n-dodecylitaconate (MDoI), respectively, with N-vinyl-2-pyrrolidone (VP) of different compositions were studied by dynamic thermogravimetric analysis. The thermal stability of the copolymers depends on the structure of the monoitaconate comonomer and on the composition of the copolymer The kinetic analysis of the degradation data shows that the thermal decomposition of these copolymers can be described by several kinetic orders depending on the copolymer and on the composition. The relative thermal stability of the copolymers increases as the VP content increases and as the length of the side chain of the itaconate increases, following the same trend as the flexibility of the copolymers in solution.  相似文献   

5.
The thermal stability and degradation behaviour of poly(4-vinylpyridine) (PVP) homopolymer and copolymers of 4-vinylpyridine and methyl acrylate (VP-MA) have been investigated. The reactivity ratios in the copolymerization were determined using an NMR method. The apparent activation energies of the degradation of the homopolymers and copolymers were calculated using the Arrhenius equation.  相似文献   

6.
Blends (50:50, w:w) of poly(vinyl chloride) (PVC) and poly(ethyl acrylate-co-4-vinyl pyridine) (PEA–4-VP) of different 4-VP contents (2–14 mol %) were prepared. These were found to be partially miscible as evidenced by the presence of a single, through broad, tangent δ peak obtained from torsion pendulum experiments. Several possible types of interactions which might exist between PVC and PEA-4-VP, such as ion-dipole, crosslinking, charge transfer, hydrogen bonding, and dipole–dipole interactions, were explored. From ultraviolet, conductance, infrared, and solubility studies, it was shown that hydrogen bonding or dipole–dipole (or possibly a combination of the two) interactions were the most likely in this system. These interactions have been suggested previously for other systems by various investigators.  相似文献   

7.
The synthesis of poly(vinyl chloride) (PVC) homopolymers and poly(vinyl chloride)-b-poly(hydroxypropyl acrylate)-b-poly(vinyl chloride) (PVC-b-PHPA-b-PVC) block copolymers via a single electron - degenerative transfer mediated living radical polymerisation was carried out on a pilot scale in industrial facilities. The thermal stability of the products was assessed conductimetrically. The block copolymers, that contained a low content of PHPA (below 12 wt.%), showed thermal stability that was approximately three times greater than that of conventional PVC. Inverse gas chromatography study of the copolymers surface showed that there was a decrease in the dispersive component and greater Lewis acidity and basicity constants were observed relative to those of PVC. The thermal stabilisation of PVC when in the presence of PHPA is explained by the interactions between its functional groups and the structures formed during the thermal degradation. The thermal stability and the surface properties of PVC-b-PHPA-b-PVC were strongly dependent on the molecular weight of the block copolymer. Lewis acid-base interaction parameters were determined and are interpreted as evidence of the PVC-b-PHPA-b-PVC compatibilising function in PVC-wood flour composites.  相似文献   

8.
Significant effort has been made in the past by many workers to investigate the mechanism of thermal decomposition of poly(vinyl chloride) (PVC). The presence and role of free radicals has been controversial in this regard. Our data on PVC and chlorinated PVC systems demonstrate the existence of macroradicals in the early stage of thermal decomposition under inert and oxidative atmospheres. Data from conventional thermogravimetric experiments are used in conjunction with the electron spin resonance findings.  相似文献   

9.
The miscibility and phase behavior in blends of PVC with poly(methyl-co-hexyl acrylate)[MHA] and poly(methyl-co-2 ethyl hexyl acrylate)[MEH] were studied. It was found that PVC is miscible with MHA copolymers having a HA volume fraction from 0.30 to 0.92 and MEH copolymers having an EH volume fraction from 0.30 to 0.83 at 100°C. By applying the mean field theory to the phase diagrams of these blend systems, segmental interaction parameters which represent the binary interaction between different monomer units were estimated. The calculated values reflect the fact that the miscibility window observed for PVC/MHA and PVC/MEH blend systems was attributed to the effect of repulsion between different monomer units within the copolymer. To investigate the effect of specific interaction on the miscibility for these blend systems, an attempt was also made to describe the blend interaction parameter as a function of polar group concentration in the acrylate copolymer. The blend interaction parameter values exhibit a u-shaped curve as a function of the weight fraction of C?O group in the copolymer, and the lowest blend interaction parameter value appears at about 0.24 C?O weight fraction.  相似文献   

10.
The thermal stability of poly(vinyl fluoride) (PVF) was studied by thermal gravimetry and mass spectrometry (TGA and TGA–MS). In low-molecular-weight polymers a two-step decomposition pattern was observed. It consisted of the dehydrofluorination to a polyene chain followed by decomposition of the resulting polyene at higher temperatures. Copolymers of vinyl fluoride–vinyl acetate (VF–VAc) and vinyl fluoride-vinyl chloride (VF–VCl) showed a simultaneous evolution of hydrofluoric acid and acetic acid and hydrofluoric acid and hydrochloric acid, respectively. This suggests that after the elimination of the weakest link a spontaneous elimination of neighboring HF molecules takes place.  相似文献   

11.
An investigation of the thermal stability of poly(methyl methacrylate) (PMMA) blends with poly(vinyl acetate) (PVAc) revealed that PVAc acts as a stabilizer as concerns thermal and photochemical degradation when the processes take place in air. The temperatures of decomposition of these blends are higher than that of pure PMMA. The efficiency of photodegradation and photooxidation in the blends is lower than that of pure PMMA.  相似文献   

12.
Miscibility of poly(4-vinyl pyridine) (P4VP) and poly(2-vinyl pyridine) (P2VP) with poly(viny acetate) (PVAc), poly(vinyl alcohol) PVA and poly(vinyl acetate-co-alcohol) (ACA copolymers) has been investigated over a wide composition range. Differentiaal scanning calorimetry (DSC) results indicate that P2VP is immiscible with PVAC, PVA, and their copolymers over the whole composition range. In turn, P4VP appears to be immiscible with PVAC and PVA, but miscible with some ACA copolymers in certain range of composition. The P4VP-ACA phase diagram for different copolymer compositions has been determined. The variation of the glass transition temperature with composition for miscible mixtures was found to follow the Gordon-Taylor equation, with the parameter κ dependent upon copolymer composition. FTIR analysis of blends reveal the existence of specific interactions via hydrogen bonding between hydroxyl groups and the nitrogen of the pyridinic ring, which appear to be decisive for miscibility. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
A crosslinked network was formed by the reaction of partially saponified poly(vinyl acetate) and toluylene diisocyanate in benzene. The yield of gel was markedly dependent on the degree of saponification and the concentrations of polymer and diisocyanate. Crosslinked poly(vinyl alcohol) was obtained by treating the poly(vinyl acetate) with a catalytic amount of sodium hydroxide in methanol without any change of the urethane crosslinks. The crosslink based on the urethane linkage was quantitatively cleaved by acids, especially by hydrobromic acid, releasing polymers of the same molecular weight as the original.  相似文献   

14.
Head-to-head (H–H) and head-to-tail (H–T) poly(methyl acrylate)s (PMAs) were hydrolyzed in a mixture of acetone and water (4:1 by volume) at 30°C by using various alkali hydroxides as catalysts. For comparison, the H–T copolymer with 26% H–H units, dimethyl succinate (DMS), dimethyl glutarate (DMG), and dimethyl adipate (DMA) as model compounds were also hydrolyzed. It was found that the hydrolyses of all PMAs proceeded autocatalytically; i.e., the rates increased as a function of the reaction time. Both the initial rate constant k0 and the autoaccelerating effect observed markedly depended on the structures of polymer chains and they decreased with increasing of the H–H sequences. The molecular weights of either H—H or H—T PMA did not show remarkable changes in either k0 value or accelerating effect. The k0 values were almost independent of the kinds of bases and were calculated to be 0.06 and 0.18 L mol?1 min?1 for H–H and H–T PMA, respectively. On the other hand, the autoaccelerating effect decreased in the order NaOH ? KOH > LiOH > CsOH for H–H PMA and NaOH > LiOH > KOH > CsOH for H–T polymer. When the ratio of acetone to water increased, the k0 value was found to decrease, whereas the accelerating effect increased. The results obtained are described and discussed.  相似文献   

15.
A concerted study of poly(vinyl chloride), chlorinated poly(vinyl chloride), and poly(vinylidene chloride) polymers by spectroscopy, thermal analysis, and pyrolysis-gas chromatography resulted in a proposed mechanism for their thermal degradation. Polymer structure with respect to total chlorine content and position was determined, and the influence of these polymer units on certain of the decomposition parameters is presented. Distinguishing differences were obtained for the kinetics of decomposition, reactive macroradical intermediates, and pyrolysis product distributions for these systems. It was determined that chlorinated poly(vinyl chloride) systems with long-chain ? CHCI? units were more thermally stable than the unchlorinated precursor, exhibited increasing activation energy for the dehydrochlorination, and produced chlorine-containing macroradical intermediates and chlorinated aromatic pyrolysis products. The poly(vinyl chloride) polymer was relatively less thermally stable, exhibited decreasing activation energy during dehydrochlorination, and produced polyenyl macro-radical intermediates and aromatic pyrolysis products.  相似文献   

16.
The aim of this study was to investigate the characteristics and mechanism of the degradation of poly(siloxane-urethane) (PSiU) copolymers by thermogravimetric analysis (TGA) and TGA coupled with Fourier-transform infra-red spectroscopy (TG-FTIR). The PSiU copolymers consisted of 4,4′-diphenylmethane diisocyanate (MDI), 1,4-butanediol (1,4-BD), and OH-terminated polydimethylsiloxane (PDMS). In TGA they exhibited a two-stage degradation at 250-650 °C. The two stages of degradation have been found to comprise eight degradation steps and two interchange reactions, as revealed by TG-FTIR analysis. The main decomposition products have been identified as CO2, tetrahydrofuran, cyclosiloxane, and macrocyclic species. In addition, the effects of hard segment content (HSC) on the degradation and thermal stability of PSiU copolymers have been investigated by means of TG and DTG curves; notably, a stability region at 410-470 °C is caused by the cyclosiloxane, as verified by TG-FTIR.  相似文献   

17.
This paper presents an initial attempt at describing poly(vinyl chloride) (PVC) thermal degradation through a semi-detailed and lumped kinetic model. A mechanism of 40 species and pseudocomponents (molecules and radicals) involved in about 250 reactions permits quite a good reproduction of the main characteristics of PVC degradation and volatilization. The presence of the two step mechanism—the first step of which corresponds to dehydrochlorination and the second to the tar release and residue char formation—are correctly predicted both in quantitative terms and in the temperature ranges. The model was validated by comparison with several thermo gravimetric analyses, both dynamic at different heating rates, and isothermal. When compared with the typical one step global apparent degradation models, the approach proposed here spans quite large operative ranges, especially when it comes to predicting product distributions. The initial results of these product predictions, even though quite preliminary, are encouraging and confirm the validity of the model.  相似文献   

18.
19.
Thermal measurements were carried out to investigate the macrostructure of as-cast poly(vinylidene fluoride) (PVDF)/poly(vinyl pyrrolidone) (PVP) blends. At high PVP content, above about 70 wt.%, the two components form a homogeneously mixed amorphous phase whose Tg varies with composition. Crystals are formed upon casting mixtures richer in PVDF; these systems exhibit complex thermal behavior that cannot be justified by a simple two-phase model. DSC measurements above room temperature on semicrystalline blends show, in addition to the melting of PVDF crystals at temperatures that decrease on increasing PVP content, a glass transition at about 80°C, independent of composition. Experimental results strongly support the hypothesis that an interphase, composed of essentially undiluted noncrystalline PVDF, is always associated with the lamellar crystals.  相似文献   

20.
Wheat starch was reacted with poly(vinyl acetate) and with poly(vinyl acetate-co-butyl acrylate) in an internal mixer at 150 °C in the absence of catalyst, and in the presence of sodium carbonate, zinc-acetate and titanium(IV) butoxide. The resulted blends were pressed into film and characterized by 1H NMR-13C NMR spectroscopy, differential scanning calorimetry (DSC), mechanical testing, dynamic mechanical thermal analysis (DMTA), thermogravimetric analysis (TGA), and water absorption. Partial trans-esterification took place between wheat starch and the polymers. The blends appeared as homogenous, translucent films with one glass transition temperature range, between that of starch and of the polymer. The presence of wheat starch in the blends improved the mechanical strength of the polymers, although elongation at break severely decreased, which is disadvantageous for processability. Zinc-acetate improved the tensile strength of the blends of starch with PVAC, while all catalysts resulted in an increase in strength of the blends of starch with poly(vinyl acetate-co-butyl acrylate) compared to the strength of the blends without catalyst. Water absorption of wheat starch/copolymer blends was between 150% and 250%, higher than that of the blends with the homopolymer, which was between 100% and 150% after soaking in water. The onset temperature of thermal decomposition was between 290 and 300 °C for all the blends, although the presence of sodium carbonate resulted in a decrease in the onset temperature of thermal decomposition by about 60 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号