首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The series of isotypic anhydrous ortho-pyrophosphates MIII(WVIO2)2(P2O7)(PO4) (M: Sc, V, Cr, Fe, Mo, Ru, Rh, In, Ir) was obtained via vapor phase moderated solid state reactions in sealed ampoules. The crystal structure of the phosphates MIII(WVIO2)2(P2O7)(PO4) (M: V, Ru, Rh) was solved from single crystal X-ray data (C2/c, Z = 16). Fairly regular MO6 and distorted WO6 octahedra share vertices with PO4 and P2O7 units to form a 3D network. For the ortho-pyrophosphates with M: V3+, Cr3+, and Fe3+ the oxidation state of M is confirmed by magnetic measurements. 31P-MAS-NMR spectra of the diamagnetic phosphates MIII(WVIO2)2(P2O7)(PO4) (M: Sc, In, Ir) show surprisingly different isotropic chemical shifts for the seven phosphorus sites. VIII(WVIO2)2(P2O7)(PO4) occurs as equilibrium phase in the quasi-binary system (V1–xWx)OPO4 at x = 0.67 and exhibits a small homogeneity range 0.60 ≤ x ≤ 0.67. The scandium compound shows a fully inverted occupancy of the M sites according to the formulation W(Sc1/2W1/2O2)2(P2O7)(PO4).  相似文献   

2.
Double-Octahedra Clusters [V2O9] in the Crystal Structure of Vanadium (III) Diphosphate, V4(P2O7)3 . As the first example for MIII diphosphates the crystal structure of V4(P2O7)3 (“ I ”) has been determined by means of X-ray diffraction of single crystals. I – according to [7] obtainable by thermal interaction of V2O5, H3PO3, and H3PO4 – crystallizes orthorhombically (data see above); in the unit cell two kinds of isolated doubleoctahedra (clusters) [V2O9], having the symmetry Cs, exist. Due to a mutual face-connection of the octahedra, within these clusters relatively short V–V distances are resulting: 2.774(8) and 3.026(7) Å. The diphosphate anions, O3POPO34? (three kinds; each having the symmetry Cs and staggered conformation), exhibit POP bond angles of 170°, being remarkably large for non-centrosymmetry. Because of the [M2IIIO9] clusters in I , and also in the isostructural diphosphates Cr4(P2O7)3 and Fe4(P2O73), magnetic investigations seem to be challenged.  相似文献   

3.
Synthesis, Crystal Structures, and Properties of the Chromium(II) Phosphate Halides Cr2(PO4)Br and Cr2(PO4)I The new compounds Cr2(PO4)Br and Cr2(PO4)I have been obtained by reaction of CrPO4, Cr and Br2 or I2 in evacuated silica tubes at elevated temperatures (Cr2(PO4)Br: 900 °C, Cr2(PO4)I: 700 °C). Single crystals of deep blue Cr2(PO4)Br and turquoise Cr2(PO4)I with edge-lengths up to 2 mm and 0.3 mm, respectively, have been grown in experiments involving the gaseous phase. Single crystal data have been used for structure determination and refinement. Though being not isotypic, the two crystal structures are closely related. Two crystallographically independent Cr2+, in polyhedra [Cr1O3X3] and [Cr2O5X], form dimers [Cr12O2O2/2X4] and [Cr22O8X2]. Distances are 1.978 Å ≤ d(Cr–O) ≤ 2.096 Å (for the iodide: 1.959 Å ≤ d(Cr–O) ≤ 2.105 Å), 2.587 Å ≤ d(Cr–Br) ≤ 3.158 Å and 2.867 Å ≤ d(Cr–I) ≤ 3.327 Å. The structures of bromide and iodide can be distinguished by the different way of connection of the Cr1 containing dimers. The phosphate group shows slightly distorted tetrahedral geometry with 1.491 Å ≤ d(P–O) ≤ 1.559 Å (1.486 Å ≤ d(P–O) ≤ 1.567 Å) and angles of 106.48° ≤ ∠(O–P–O) ≤ 111.69° (106.57° ≤ ∠(O–P–O) ≤ 111.72°. IR-spectra of Cr2(PO4)Br and Cr2(PO4)I, the Raman-spectrum of Cr2(PO4)Br and electronic spectra of the two compounds in the UV/vis region at low temperature are reported and discussed.  相似文献   

4.
As a result of solid-state reactions four chromium(III) phosphates(V) have been obtained, i.e. Cr(PO3)3, Cr4(P2O7)3, Cr2P4O13 and CrPO4. Cr2P4O13 has been obtained as a result of a solid-state reaction between Cr2O3 and (NH4)2HPO4 as well as between CrPO4 and Cr(PO3)3 mixed at a molar ratio of 1:1 or between Cr4(P2O7)3 and Cr(PO3)3 mixed at a molar ratio of 1:2. Melting temperatures and the products of thermal decomposition have been determined for the obtained chromium(III) phosphates(V).  相似文献   

5.
Optical spectra (powder reflectance, UV/Vis/NIR region), and temperature dependent magnetic behavior (χ, μ/μB) were recorded for the series of anhydrous europium(III) phosphates EuIII3O3(PO4), EuIIIPO4, EuIII2P4O13, lt- and ht-EuIII(PO3)3, and EuIIIP5O14. By modeling within the AOM framework, the experimental data can be related to the ligand-field splitting experienced by the Eu3+ ions in the various mainly low-symmetry coordination environments. Our study confirms the well-established relation eσ(Eu3+–O2–) ~ d(Eu3+–O2–)–7.0 between the AOM parameter and the interatomic distance. In addition it is shown that eσ(Eu3+–O2–) depends strongly on the highly variable polarizability of the oxygen ligator atoms. This polarizability can be related to the optical basicity Λ of the various phosphates.  相似文献   

6.
The synthesis of MoVI bisphosphonates (BPs) complexes in the presence of a heterometallic element has been studied. Two different BPs have been used, the alendronate ligand, [O3PC(C3H6NH3)(O)PO3]4? (Ale) and a new BP derivative with a pyridine ring linked to the amino group, [O3PC(C3H6NH2CH2C5H4N)(O)PO3]4? (AlePy). Three compounds have been isolated, a tetranuclear MoVI complex with CrIII ions, (NH4)5[(Mo2O6)2(O3PC(C3H6NH3)(O)PO3)2Cr]·11H2O (Mo4(Ale)2Cr), its MnIII analogue, (NH4)4.5Na0.5[(Mo2O6)2(O3PC(C3H6NH3)(O)PO3)2Mn]·9H2O (Mo4(Ale)2Mn), and a cocrystal of two polyoxomolybdates, (NH4)10Na3[(Mo2O6)2(O3PC(C3H6NH2CH2C5H4N)(O)PO3)2Cr]2[CrMo6(OH)6O18]·37H2O ([Mo4(AlePy)2Cr]2[CrMo6]). In this latter compound an Anderson-type POM [CrMo6(OH)6O18]3? is sandwiched between two tetranuclear MoVI complexes with AlePy ligands. The protonated triply bridging oxygen atoms bound to the central CrIII ion of the Anderson anion develop strong hydrogen bonding interactions with the oxygen atoms of the bisphosphonate complexes. The UV–Vis spectra confirm the coexistence in solution of both POMs. Cyclic voltammetry experiments have been performed, showing the reduction of the Mo centers. In strong contrast with the reported MoVI BP systems, the presence of trivalent cations in close proximity to the MoVI centers dramatically impact the potential solid-state photochromic properties of these compounds.  相似文献   

7.
Single crystals of the oxidephosphates TiIIITiIV3O3(PO4)3 (black), CrIII4TiIV27O24(PO4)24 (red-brown, transparent), and FeIII4TiIV27O24(PO4)24 (brown) with edge-lengths up to 0.3 mm were grown by chemical vapour transport. The crystal structures of these orthorhombic members (space group F2dd ) of the lazulite/lipscombite structure family were refined from single-crystal data [TiIIITiIV3O3(PO4)3: Z=24, a=7.3261(9) Å, b=22.166(5) Å, c=39.239(8) Å, R1=0.029, wR2=0.084, 6055 independent reflections, 301 variables; CrIII4TiIV27O24(PO4)24: Z=1, a=7.419(3) Å, b=21.640(5) Å, c=13.057(4) Å, R1=0.037, wR2=0.097, 1524 independent reflections, 111 variables; FeIII4TiIV27O24(PO4)24: Z=1, a=7.4001(9) Å, b=21.7503(2) Å, c=12.775(3) Å, R1=0.049, wR2=0.140, 1240 independent reflections, 112 variables). For TiIIITiIVO3(PO4)3 a well-ordered structure built from dimers [TiIII,IV2O9] and [TiIV,IV2O9] and phosphate tetrahedra is found. The metal sites in the crystal structures of Cr4Ti27O24(PO4)24 and Fe4Ti27O24(PO4)24, consisting of dimers [MIIITiIVO9] and [TiIV,IV2O9], monomeric [TiIVO6] octahedra, and phosphate tetrahedra, are heavily disordered. Site disorder, leading to partial occupancy of all octahedral voids of the parent lipscombite/lazulite structure, as well as splitting of the metal positions is observed. According to Guinier photographs TiIII4TiIV27O24(PO4)24 (a=7.418(2) Å, b=21.933(6) Å, c=12.948(7) Å) is isotypic to the oxidephosphates MIII4TiIV27O24(PO4)24 (MIII: Cr, Fe). The UV/vis spectrum of Cr4Ti27O24(PO4)24 reveals a rather small ligand-field splitting Δo=14,370 cm−1 and a very low nephelauxetic ratio β=0.72 for the chromophores [CrIIIO6] within the dimers [CrIIITiIVO9].  相似文献   

8.
Contributions on Crystal Structures and Thermal Behaviour of Anhydrous Phosphates. XXIII. Preparation, Crystal Structure, and Thermal Behaviour of the Mercury(I) Phosphates α-(Hg2)3(PO4)2, β-(Hg2)3(PO4)2, and (Hg2)2P2O7 Light-yellow single crystals of (Hg2)2P2O7 have been obtained via chemical vapour transport in a temperature gradient (500 °C → 450 °C, 23 d) using Hg2Cl2 as transport agent. Characteristic feature of the crystal structure (P2/n, Z = 2, a = 9,186(1), b = 4,902(1), c = 9,484(1) Å, β = 98,82(2)°, 1228 independent of 5004 reflections, R(F) = 0,066 for 61 variables, 7 atoms in the asymmetric unit) are Hg22+-units with d(Hg1–Hg1) = 2,508 Å and d(Hg2–Hg2) = 2,519 Å. The dumbbells Hg22+ are coordinated by oxygen, thus forming polyhedra [(Hg12)O4] and [(Hg22)O6]. These polyhedra share some oxygen atoms. In addition they are linked by the diphosphate anion P2O74– (ecliptic conformation; ∠(P,O,P) = 129°) to built up the 3-dimensional structure. Under hydrothermal conditions (T = 400 °C) orange single crystals of the mercury(I) orthophosphates α-(Hg2)3(PO4)2 and β-(Hg2)3(PO4)2 have been obtained from (Hg2)2P2O7 and H3PO4 (c = 1%). The crystal structures of both modifications have been refined from X-ray single crystal data [α-form (β-form): P21/c (P21/n), Z = 2 (2), a = 8,576(3) (7,869(3)), b = 4,956(1) (8,059(3)), c = 15,436(3) (9,217(4)) Å, β = 128,16(3) (108,76(4))°, 1218 (1602) independent reflections of 4339 (6358) reflections, R(F) = 0,039 (0,048) for 74 (74) variables, 8 (8) atoms in the asymmetric unit]. In the structure of α-(Hg2)3(PO4)2 three crystallographically independent mercury atoms, located in two independent dumbbells, are coordinated by three oxygen atoms each. Thus, [(Hg2)O6] dimers with a strongly distorted tetrahedral coordination of all mercury atoms are formed. Such dimers are present besides [(Hg2)O5]-polyhedra in the less dense crystal structure of β-(Hg2)3(PO4)2 (d(Hg–Hg) = 2,518 Å). The mercury(I) phosphates are thermally labile and disproportionate between 200 °C (β-(Hg2)3(PO4)2) and 480 °C (α-(Hg2)3(PO4)2) to elemental mercury and the corresponding mercury(II) phosphate.  相似文献   

9.
New Compounds with Garnet Structure. VI. Vanadates The preparation of vanadate-garnets of the following three types is reported: (I) {Na3}[B2III](V3)O12 (BIII = Cr, Sc), (II) {LiCa2}[B2II](V3)O12 (BII = Mg), (III) {Ca2AIII}[Li2] (V3)O12 (AIII = In, Sc). The Cr-compound of type (I) decomposes above 690°C into a mixture of Cr2O3 and NaVO3. The analogous Fe-compound decomposes in a similar way already at 400°C; therefore the preparation by solid state reaction is not possible. Employing larger BIII-ions (Y, Yb, Lu) no garnets of type (I), but mixtures of BIIIVO4 (zircon structure) and Na3BIIIV2O8 are formed. Garnets of type (II) do not exist, when BII are Co and Ni. Mixtures of {Ca3}[LiBII](V3)O12 (garnet structure), LiBIIVO4 (spinel structure) and B3II(VO4)2 are formed. With type (III) for AIII = Y reaction occurs forming a mixture of YVO4, Ca3(VO4)2 and Li3VO4.  相似文献   

10.
Chromium(III) nutritional supplements are widely consumed for their purported antidiabetic activities. X‐ray fluorescence microscopy (XFM) and X‐ray absorption near‐edge structure (XANES) studies have now shown that non‐toxic doses of [Cr3O(OCOEt)6(OH2)3]+ ( A ), a prospective antidiabetic drug that undergoes similar H2O2 induced oxidation reactions in the blood as other Cr supplements, was also oxidized to carcinogenic CrVI and CrV in living cells. Single adipocytes treated with A had approximately 1 μm large Cr hotspots containing CrIII, CrV, and CrVI (primarily CrVI thiolates) species. These results strongly support the hypothesis that the antidiabetic activity of CrIII and the carcinogenicity of CrVI compounds arise from similar mechanisms involving highly reactive CrVI and CrV intermediates, and highlight concerns over the safety of CrIII nutritional supplements.  相似文献   

11.
Contributions on Crystal Chemistry and Thermal Behaviour of Anhydrous Phosphates. XXXII. New Orthophosphates of Divalent Chromium — Mg3Cr3(PO4)4, Mg3, 75Cr2, 25(PO4)4, Ca3Cr3(PO4)4 and Ca2, 00Cr4, 00(PO4)4 Solid state reactions via the gas phase led in the systems A3(PO4)2 / Cr3(PO4)2 (A = Mg, Ca) to the four new compounds Mg3Cr3(PO4)4 ( A ), Mg3.75Cr2.25(PO4)4 ( B ), Ca3Cr3(PO4)4 ( C ), and Ca2.00Cr4.00(PO4)4 ( D ). These were characterized by single crystal structure investigations [( A ): P21/n, Z = 1, a = 4.863(2) Å, b = 9.507(4) Å, c = 6.439(2) Å, β = 91.13(6)°, 1855 independend reflections, 63 parameters, R1 = 0.035, wR2 = 0.083; ( B ): P21/a, Z = 2, a = 6.427(2) Å, b = 9.363(2) Å, c = 10.051(3) Å, β = 106.16(3)°, 1687 indep. refl., 121 param., R1 = 0.032, wR2 = 0.085; ( C ): P‐1, Z = 2, a = 8.961(1) Å, b = 8.994(1) Å, c = 9.881(1) Å, α = 104.96(2)°, β = 106.03(2)°, γ = 110.19(2)°, 2908 indep. refl., 235 param., R1 = 0.036, wR2 = 0.111; ( D ): C2/c, Z = 4, a = 17.511(2) Å, b = 4.9933(6) Å, c = 16.825(2) Å, β = 117.95(1)°, 1506 indep. refl., 121 param., R1 = 0.034, wR2 = 0.098]. The crystal structures contain divalent chromium on various crystallographic sites, each showing a (4+n)‐coordination (n = 1, 2, 3). For the magnesium compounds and Ca2.00Cr4.00(PO4)4 a disorder of the divalent cations Mg2+/Cr2+ or Ca2+/Cr2+ is observed. Mg3.75Cr2.25(PO4)4 adopts a new structure type, while Mg3Cr3(PO4)4 is isotypic to Mg3(PO4)2. Ca3Cr3(PO4)4 and Ca2.00Cr4.00(PO4) 4 are structurally very closely related and belong to the Ca3Cu3(PO4)4‐structure family. The orthophosphate Ca9Cr(PO4)7, containing trivalent chromium, has been obtained besides C and D .  相似文献   

12.
Single crystals of Ga(PO3)3 were grown in polyphosphoric acid melts by heating a mixture of Ga2O3 and H3PO4 (350 °C, 7 d). The compound belongs to the series of metaphosphates MIII(PO3)3 forming the C-type structure (monclinic, Cc, Z = 12, a = 13.0058(21), b = 18.915(3), c = 9.3105(15) Å, β = 126.900(11), 5348 independent reflections (I > 0); 354 variables; 39 atoms in asymetric unit; R1 = 0.048, wR2 = 0.1034). The structure is characterized by a superstructure with tripled monoclinic b-axis. Three crystallographically independent GaIIIO6 octahedra (d¯(Ga–O) = 1.950 Å) are linked by 1(PO3) chains.  相似文献   

13.
The crystallization of complex phosphates from the melts of Cs2O-P2O5-CaO-MIII2O3 (MIII—Al, Fe, Cr) systems have been investigated at fixed value Cs/P molar ratios equal to 0.7, 1.0 and 1.3 and Са/Р=0.2 and Ca/МIII=1. The fields of crystallization of CsCaP3O9, β-Ca2P2O7, Cs2CaP2O7, Cs3CaFe(P2O7)2, Ca9MIII(PO4)7 (MIII—Fe, Cr), Cs0.63Ca9.63Fe0.37(PO4)7 and CsCa10(PO4)7 were determined. Obtained phosphates were investigated using powder X-ray diffraction and FTIR spectroscopy. Novel whitlockite-related phases CsCa10(PO4)7 and Cs0.63Ca9.63Fe0.37(PO4)7 have been characterized by single crystal X-ray diffraction: space group R3c, a=10.5536(5) and 10.5221(4) Å, с=37.2283(19) and 37.2405(17) Å, respectively.  相似文献   

14.
Contributions on the Thermal Behaviour of Anhydrous Phosphates. IX. Synthesis and Crystal Structure of Cr6(P2O7)4. A Pyrophosphate Containing Di- and Trivalent Chromium Cr6(P2O7)4 (Cr22+Cr43+(P2O7)4) can be obtained reducing CrPO4 by phosphorus (950°C, 48 h, 100 mg iodine as mineralizer). By means of chemical transport reactions (transport agent iodine; 1050 → 950°C) the compound has been separated from its neighbour phases (Cr2P2O7, CrP3O9) and crystallized (greenish, transparent crystals; edge length up to 0.3 mm). The crystal structure of Cr6(P2O7)4 (Spcgrp.: P-1; z = 1; a = 4.7128(8) Å, b = 12.667(3) Å, c = 7.843(2) Å, α = 89.65(2)°, β = 92.02(2)°, γ = 90.37(2) has been solved and refined from single crystal data (2713 unique reflections, 194 parameter, R = 0.035). Cr2+ is surrounded by six oxygen atoms which occupy the corners of an elongated octahedron (4 × dCr? O ≈? 2.04 Å; 2 × dCr? O ≈? 2.62 Å). The Cr3+ ions are also coordinated octahedraly (1.930 Å ≤ dCr? O ≤ 2.061 Å). The crystallographically independent pyrophosphate groups show nearly eclipsed conformation. The bridging angles (P? O? P) are 136.5° and 138.9° respectively.  相似文献   

15.
Two new potassium vanadium phosphates have been prepared and their structures have been determined from analysis of single crystal X-ray data. The two compounds, K3(VO)(V2O3) (PO4)2(HPO4) and K3(VO)(HV2O3)(PO4)2(HPO4), are isostructural, except for the incorporation of an extra hydrogen atom into the nearly identical frameworks. The structures consist of a three-dimensional network of [VO]n chains connected through phosphate groups to a [V2O3] moiety. Magnetic susceptibility experiments indicate that in the case of the di-hydrogen compound, there are no significant magnetic interactions between the three independent vanadium (IV) centers. Crystal data: for K3(VO)(V2O3)(PO4)2 (HPO4), Mr = 620.02, orthorhombic space group Pnma (No. 62), a = 7.023(4) Å, b = 13.309(7) Å, c = 14.294(7) Å, V = 1336(2) Å3, Z = 4, R = 5.02%, and Rw = 5.24% for 1238 observed reflections [I > 3σ(I)]; for K3(VO)(HV2O3)(PO4)2(HPO4), Mr = 621.04, orthorhombic space group Pnma (No. 62), a = 6.975(3) Å, b = 13.559(7) Å, c = 14.130(7) Å, V = 1336(1) Å3, Z = 4, R = 6.02%, and Rw = 6.34% for 1465 observed reflections [I > 3σ(I)].  相似文献   

16.
[VIIIF(PO4), en] and [TiIII(OH)(PO4), en] (en = ethylenediamine) are two new layered compounds isostructural with ULM-11. Both were synthesized hydrothermally (453 K, 3 days for ULM-11 (VIII) and 453 K, 28 days for ULM-11 (TiIII)). Structures were determined by single-crystal X-ray diffraction (VIII sample) or powder X-ray diffraction (TiIII sample). Both compounds crystallize in the monoclinic system (space group P21/ c) with cell parameters at 293 K: a = 9.2272 (3) A, b = 7.3532 (2) A, c = 9.8496 (2) A, β = 101.315 (1) °, V = 655.30 A3, Z = 4 for the vanadium phase and a = 9.265 (1) Å, b = 7.329 (1) A, c = 9.911 (1) A, β = 100.89 (1) °, V = 660.90 Å3, Z = 4 for the titanium compound. In both lamellar structures, layers consist of chains of MO3X2N octahedra (M = V, Ti and X = F, OH) related together via PO4 tetrahedra. One amino group of the diamine is directly bound to the metallic center (via the N atom) while the protonated second amino group points at the interlayer space interacting with terminal P-O groups by strong hydrogen bonds.  相似文献   

17.
The First Vanadium(III) Borophosphate: Synthesis and Crystal Structure of CsV3(H2O)2[B2P4O16(OH)4] CsV3(H2O)2[B2P4O16(OH)4] was prepared under mild hydrothermal conditions (T = 165 °C) from mixtures of CsOH(aq), VCl3, H3BO3, and H3PO4 (molar ratio 1 : 1 : 1 : 2). The crystal structure was determined by X‐ray single crystal methods (monoclinic; space group C2/m, No. 12): a = 958.82(15) pm, b = 1840.8(4) pm, c = 503.49(3) pm; β = 110.675(4)°; Z = 2. The anionic partial structure contains oligomeric units [BP2O8(OH)2]5–, which are built up by a central BO2(OH)2 tetrahedron and two PO4 tetrahedra sharing common corners. VIII is octahedrally coordinated by oxygen of adjacent phosphate tetrahedra and OH groups of borate tetrahedra as well as oxygen of phosphate tetrahedra and H2O molecules, respectively (coordination octahedra VO4(OH)2 and VO4(H2O)2). The oxidation state +3 for vanadium was confirmed by measurements of the magnetic susceptibility. The trimeric borophosphate groups are connected via vanadium centres to form layers with octahedra‐tetrahedra ring systems, which are likewise linked via VIII‐coordination octahedra. Overall, a three‐dimensional framework constructed from VO4(OH)2 and VO4(H2O)2 octahedra as well as BO2(OH)2 and PO4 tetrahedra results. The structure contains channels running along [001], which are occupied by Cs+ in a distorted octahedral coordination (CsO4(H2O)2).  相似文献   

18.
Synthesis and Crystal Structure of Vanadium(III) Borophosphate, V2[B(PO4)3] By reaction of boron phosphate, BPO4, and vanadium(IV)‐oxide, VO2, at 1050 °C a hitherto unknown vanadium(III)‐borophosphate is formed. Its composition was found to be V2BP3O12, its structure was elucidated by single crystal X‐ray diffraction, the cell parameters are: a = b = 13.9882Å; c = 7.4515Å; α = β = 90°, γ = 120°; Z = 6; space group: P6 3/m. Noteworthy features of the structure are V2O9 units (two VIIIO6 octahedra connected via their faces) and isolated trisphosphatoborate groups, B(PO4)3. By shared oxide ions, the aforementioned groups are interconnected, thus forming a three dimensional network. The structural relation between the title compound and an analogous chromium compound is discussed.  相似文献   

19.
Low Spin Manganese Phthalocyanines: Preparation, Properties and Electronic Raman Spectrum of Di(cyano)phthalocyaninatomanganate(III) and -(II) . Iodophthalocyaninatomanganese(III) reacts with cyanide in acetone to yield di(cyano)phthalocyaninatomanganate(II), in dichloromethane, however di(cyano)phthalocyaninatomanganate(III) is formed. Both complexes are isolated as (n-Bu4N)-salts. In the cyclovoltammogram the redox couple MnII/MnIII is attributed to E1/2 = - 0.22 V and the first ringoxidation Pc(2 -)/Pc(1 -) to E1/2 = 0.75 V. The paramagnetic salts have magnetic moments (μeff = 2.11 resp. 2.95 B.M.) typical for the low spin ground state of MnII resp. MnIII (S = 1/2 resp. 1). The uv-vis-nir spectra are discussed. Comparison with the dicyano-complexes of CrIII, FeII/III and CoIII indicates that the multiple “extra bands” between 4 and 23 kK should be assigned to spin allowed trip-multiplets. The vibrational spectra are discussed. νas(Mn? C)(a2u) is found at 350 cm?1, νas(C? N)(a2u; cyanide) at 2 092 (MnII) and 2 114 cm?1 (MnIII). The Raman spectra are dominated by resonance Raman(RR) effects. With variable-wavelength excitation polarized, depolarized and anomalously polarized vibrations assigned to phthalocyanine skeletal modes are selectively RR-enhanced for the MnII complex. Intensive lines between 1 650 and 3 300 cm?1 are due to combinations and overtones of the a2g vibrations at 1 492 and 1 602 cm?1. In the 10 K Raman spectrum of (n-Bu4N)[Mn(CN)2Pc(2 -)] intraconfigurational transitions Γ1 → Γ4 and Γ1 → Γ3, Γ5 resulting from the splitting of the 3T1g ground state of MnIII (Oh symmetry) by spin-orbit coupling are observed as anomalously polarized and depolarized lines at 172 and 287 cm?1.  相似文献   

20.
利用Cr(III)-取代磷钨杂多配合物PW11O39CrIII(H2O)4-的内球电子转移特性, 通过与反应活性中心CrIII(H2O)第六配位水分子的交换反应, 将4-甲基吡啶分子络合修饰到该活性中心上进行阳极催化氧化. 可见吸收光谱证实4-甲基吡啶和CrIII(H2O)中心进行配体交换反应生成PW11O39CrIII(NC6H7)4-; 而循环伏安和恒电位电解实验结果表明, 修饰在Cr(III)活性中心上的4-甲基吡啶分子每一步都经历2电子氧化, 依次生成吡啶-4-甲醇, 吡啶-4-甲醛和吡啶-4-甲酸. 由此提出了一个关于这类反应的分子内电催化模板机制, 为过渡金属取代杂多配合物作为间接氧化电催化剂的应用开辟了一条新途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号