首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
We prepared various copolymers containing styrene and methacrylates to examine their miscibility with polycarbonates such as bisphenol A polycarbonate (PC), dimethylpolycarbonate (DMPC), and tetramethylpolycarbonate (TMPC). Among the various copolymers examined, poly(methyl methacrylate‐co‐cyclohexylmethacrylate) [P(MMA–CHMA)] copolymers containing proper amounts of cyclohexylmethacrylate (CHMA) formed miscible blends with PC and DMPC, whereas TMPC did not form a miscible blend with P(MMA–CHMA). However, TMPC was miscible with poly(styrene‐co‐cyclohexylmethacrylate) [P(S–CHMA)] copolymers containing less than about 40 wt % CHMA, whereas PC and DMPC were always immiscible with P(S–CHMA). Miscible blends exhibited lower critical solution temperature (LCST)‐type phase behavior. Binary interaction energies were calculated from the observed phase boundaries with lattice–fluid theory combined with a binary interaction model. The quantitative interaction energy of each binary pair indicated that the phenyl ring substitution of polycarbonate with methyl groups did not lead to interactions that were favorable for miscibility with methyl methacrylate (MMA) and CHMA, but it did lead to favorable interactions with styrene. The addition of CHMA to MMA initially increased the LCST but ultimately led to immiscibility with PC and DMPC; however, addition of CHMA to styrene always decreased the LCST with TMPC. The increased LCST of PC or DMPC blends stemmed from intramolecular repulsion between MMA and CHMA, whereas the decreased LCST of TMPC/P(S–CHMA) blends with CHMA content came from negative interaction energy between styrene and CHMA. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1948–1955, 2001  相似文献   

2.
The poly(methyl methacrylates) of branched structure with a covalently bonded fullerene were synthesized by three-dimensional radical polymerization of methyl methacrylate with triethylene glycol dimethacrylate or allyl methacrylate in toluene containing C60. The kinetics of copolymerization of methyl methacrylate with multifunctional co-monomers in the absence of fullerene is compared with that in its presence. The physicochemical characteristics and thermal stability of the obtained copolymers are also compared. The electron spin resonance (ESR) method was applied to study the kinetics of accumulation of the fullerene radicals in the course of the (co)polymerization of methyl methacrylate.  相似文献   

3.
Novel reversible networks utilizing photodimerization of crosslinkable anthracene groups and thermal dissociation were investigated. Reversible addition‐fragmentation chain transfer polymerization yielded well‐defined copolymers with 9‐anthrylmethyl methacrylate (AMMA) and other alkyl methacrylates such as methyl methacrylate (MMA) and 2‐ethylhexyl methacrylate (EHMA) having different AMMA compositions. Well‐controlled block copolymerization of AMMA and alkyl methacrylates was also successfully accomplished using a trithiocarbonate‐terminated poly(alkyl methacrylate) macro‐chain transfer agent. The anthracene‐containing copolymers showed reversibility via crosslinking based on photodimerization with ultraviolet irradiation and subsequent thermal dissociation. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2302–2311  相似文献   

4.
New chlorinated and carbonyl-containing polymethacrylates were prepared via the radical copolymerization of methyl 2-chloroacrylate with ortho- and para-acetylphenyl methacrylates or ortho- and para-formylphenyl methacrylates. It was shown that the reactivity ratios and the yields of copolymers of the ortho phenyl methacrylate isomers are lower than those for the corresponding para isomers because to the steric hindrance created by the substituents on the phenyl ring. Some mechanical parameters (ultimate tensile strength, compressive strength, flexural strength, and the Vicat softening point) of the copolymers are better than those of poly(methyl methacrylate).  相似文献   

5.
Copolymerization of binary mixtures of alkyl (meth)acrylates has been initiated in toluene by a mixed complex of lithium silanolate  (s-BuMe2SiOLi) and s-BuLi (molar ratio > 21) formed in situ by reaction of s-BuLi with hexamethylcyclotrisiloxane (D3). Fully acrylate and methacrylate copolymers, i.e., poly(methyl acrylate-co-n-butyl acrylate), poly(methyl methacrylate-co-ethyl methacrylate), poly(methyl methacrylate-co-n-butyl methacrylate), poly(methyl methacrylate-co-n-butyl methacrylate), poly(isobornyl methacrylate-co-n-butyl methacrylate), poly(isobornyl methacrylate-co-n-butyl methacrylate) of a rather narrow molecular weight distribution have been synthesized. However, copolymerization of alkyl acrylate and methyl methacrylate pairs has completely failed, leading to the selective formation of homopoly(acrylate). As result of the isotactic stereoregulation of the alkyl methacrylate polymerization by the s-BuLi/s-BuMe2SiOLi initiator, highly isotactic random and block copolymers of (alkyl) methacrylates have been prepared and their thermal behavior analyzed. The structure of isotactic poly(ethyl methacrylate-co-methyl methacrylate) copolymers has been analyzed in more detail by Nuclear Magnetic Resonance (NMR). © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2525–2535, 1999  相似文献   

6.
New polydithiocarbonates and polythiocarbonates were obtained by interfacial polymerization of bis(4-mercaptophenyl)methane, bis(4-mercaptophenyl)ether and bis(4-mercaptophenyl)sulfide with phosgene, bisphenol A bischloroformate and bisphenol A polycarbonate oligomers (-OH/-O-CO-Cl terminated). Polymerization process was carried out under interfacial conditions using a phase-transfer catalyst, as earlier described for the synthesis of polydithiocarbonates and polythiocarbonates from 2,2-bis(4-mercaptophenyl)propane. The structures of the polymers were examined by IR and NMR spectroscopies; their thermal properties were investigated by thermogravimetric analysis and differential scanning calorimetry. In particular, the effect of the substitution of one or both the ethereal oxygen atoms of the carbonate group by sulfur has been analyzed by comparing the Tg values and the ability to crystallize of the sulfur containing polymers with those of the corresponding polycarbonates.  相似文献   

7.
Statistical copolymers of methyl methacrylate with cyclohexyl and trimethylsilyloxy ethyl methacrylate were synthesized with two different catalytic systems based on the zirconocene complex Cp2ZrMe2. The reactivity ratios of methyl methacrylate and these methacrylates were calculated with the Finemann–Ross, inverted Finemann–Ross, and Kelen–Tüdos graphical methods. The structural parameters of these copolymers were estimated from the calculation of the dyad monomer sequence fractions. Two different borate cocatalysts were employed, and their effect on the copolymerization process is discussed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3305–3314, 2005  相似文献   

8.
The synthesis of bisphenol A poly(carbonate–ester) copolymers was studied by phase-transfer catalysis and modified interfacial polymerization. Only low molecular weight copolymers were prepared directly from dicarboxylic acids, phosgene, and bisphenol A by an interfacial process that involves the use of pyridine as catalyst, HCl acceptor, and weak base. To avoid the use of tertiary amines, which can be difficult to remove from the polymer products, and to produce higher molecular weight copolymers from the same dicarboxylic acid precursors another synthetic method was developed. This more effective method required careful pH control that was achieved by the selective use of the weak-base potassium carbonate in the first stage of the process. Moreover, elevated reaction temperatures (~65–70°C) and phase-transfer catalysis were used. The carbonate–ester copolymers prepared by this technique had consistently high intrinisic viscosities, little or no anyhydride microstructure, and higher degrees of ester unit incorporation than those produced by the pyridine-catalyzed method. These copolymers also had glass transition temperatures (Tg) 20–30°C higher than bisphenol A polycarbonate homopolymer. An analytical method for determining quantitatively the amount of ester units in the bisphenol A poly(carbonate-esters) was developed by using Fourier transform infrared spectroscopy (FT-IR). Agreement between this FT-IR method and a quantitative nuclear magnetic resonance (NMR) method was found to be reasonable, especially for copolymers with ester unit percentages lower than 40%.  相似文献   

9.
氢化松香与HEMA酯化物自聚与共聚研究   总被引:3,自引:0,他引:3  
用氢化松香(HR)与甲基丙烯酸-2-羟乙酯(HEMA)进行酯化反应,得到了酯化物(HRH),然后对其进行了在甲苯中的自由基自聚反应、以及与甲基丙烯酸甲酯(MMA)或与苯乙烯(St)的共聚反应,制备了自聚物和共聚物,用IR和核磁共振氢谱(1HNMR)对产物进行了表征,用综合热分析仪表征了产物的热稳定性和玻璃化转变温度.结果表明:成功合成了HRH自聚物(PolyHRH)、以及共聚物[Poly(HRH-co-St)和Poly(HRH-co-MMA)].产物的热稳定性顺序为:HRH>PolyHRH>Poly(HRH-co-St)>Poly(HRH-co-MMA).  相似文献   

10.
Sodium 11-(methacryloyloxy) undecanylsulfate (MET) monomer units were incorporated in polystyrene (PS) and poly(methyl methacrylate) (PMMA) by free radical copolymerization in solution with styrene and methyl methacrylate, respectively. Experimental compositions, thermal degradations, average molecular weights, glass transitions and affinities for moisture were experimentally determined for copolymers of various compositions. Both styrene and methyl methacrylate copolymerized well with MET. An increase in the moisture affinity and a change in the glass transition were observed with increasing MET content in the respective copolymers.  相似文献   

11.
We report on self‐emulsification and surface modification effect of novel fluorinated amphiphilic graft copolymers prepared with perfluoroalkyl acrylate and 2‐dimethylaminoethyl methacrylate using simple macromonomer technique and radical copolymerization. The interfacial properties of amphiphilic graft copolymers were characterized with light scattering, contact angle measurement, and X‐ray photoelectron spectroscopy. The preparation of fluorinated amphiphilic graft copolymer was verified using nuclear magnetic resonance and Fourier transform infrared spectroscopy. It was observed that the fluorinated amphiphilic graft copolymer has both strong hydrophobic and hydrophilic properties and shows self‐emulsification ability without addition of external surfactants. The graft copolymer shows very low surface energy even though the copolymer has low content of hydrophobic segment and better performance than random copolymer for low‐energy surface modification. The addition of small amount of the graft copolymer (0.1 wt %) into the base poly(methyl methacrylate) was sufficient to lower the surface energy less than that of poly(tetrafluoroethylene). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

12.
以聚乙二醇甲醚甲基丙烯酸酯(MPEGMA)为大分子单体,甲基丙烯酸六氟丁酯(HFMA)、对苯乙烯磺酸钠(NaSS)为共聚单体,采用大分子单体接枝共聚法,制备了一种阴离子型含氟两亲接枝共聚物P( HFMA-co-NaSS) -g-PEG.利用FTIR、1H-NMR和19F-NMR对共聚物的分子结构进行了表征.表面张力法测...  相似文献   

13.
Alternating head-to-head (h-h) copolymers of methyl or n-butyl acrylates with the corresponding methacrylates were synthesized by alternating copolymerization of ethylene with citraconic anhydride, followed by esterification and Characterization. The respective equimolar (1:) head-to-tail (h-t) copolymers were also prepared by conventional radical copolymerization as comparison. The alternating, relatively low molecular weight h-h copolymers obtained showed softening, glass transition, and degradation temperatures somewhat higher than those displayed by the 1:1 h-t copolymers. After pyrolysis the main decomposition products from both h-h and h-t copolymers were alcohols, acrylates, and methacrylates. Furthermore, the ratios of alcohols to acrylates were larger for the h-h than for the h-t copolymers and smaller for the methyl than for the n-butyl esters.  相似文献   

14.
双官能团引发剂进行的基团转移嵌段共聚   总被引:1,自引:2,他引:1  
嵌段共聚物的合成技术有较大的可靠性和预见性,并可提供别的聚合物所不能达到的特殊性能。用基团转移聚合的方法进行丙烯酸酯类极性单体室温下的活性聚合,能得到具有预定链长、嵌段纯度和多分散性指数小的嵌段共聚物。用双官能团引发剂进行基团转移嵌段共聚,可减少加单体的次数,避免引进杂质,且能合成用单官能团引发剂所无法得到的A—B—  相似文献   

15.
A series of amphiphilic oligomers have been synthesized in which the hydrophobic component was polyisobutylene, polystyrene, poly(methyl methacrylate) or dodecane, and the hydrophilic component was poly(vinyl alcohol) or poly(methacrylic acid). These syntheses exploited the chain extension chemistry of aldehyde-functionalized materials using silyl aldol polymerization or the group transfer polymerization of methacrylates. The interfacial character of these new amphiphilic oligomers was examined using water/toluene emulsification tests. © 1997 John Wiley & Sons, Inc.  相似文献   

16.
Graft and star copolymers having poly(methacrylate) backbone and ethylene–propylene random copolymer (EPR) branches were successfully synthesized by radical copolymerization of an EPR macromonomer with methyl methacrylate (MMA). EPR macromonomers were prepared by sequential functionalization of vinylidene chain‐end group in EPR via hydroalumination, oxidation, and esterification reactions. Their copolymerizations with MMA were carried out with monofunctional and tetrafunctional initiators by atom transfer radical polymerization (ATRP). Gel‐permeation chromatography and NMR analyses confirmed that poly(methyl methacrylate) (PMMA)‐g‐EPR graft copolymers and four‐arm (PMMA‐g‐EPR) star copolymers could be synthesized by controlling EPR contents in a range of 8.6–38.1 wt % and EPR branch numbers in a range of 1–14 branches. Transmission electron microscopy of these copolymers demonstrated well‐dispersed morphologies between PMMA and EPR, which could be controlled by the dispersion of both segments in the range between 10 nm and less than 1 nm. Moreover, the differentiated thermal properties of these copolymers were demonstrated by differential scanning calorimetry analysis. On the other hand, the copolymerization of EPR macromonomer with MMA by conventional free radical polymerization with 2,2′‐azobis(isobutyronitrile) also gave PMMA‐g‐EPR graft copolymers. However, their morphology and thermal property remarkably differed from those of the graft copolymers obtained by ATRP. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5103–5118, 2005  相似文献   

17.
The phase behavior of a series of styrene/maleic anhydride (SMA) copolymers with various polyacrylate and polymethacrylate homopolymers has been investigated using various techniques. None of the polyacrylates are miscible with SMA copolymers. Poly (methyl methacrylate) (PMMA) poly(ethyl methacrylate) (PEMA) and poly(n-propyl methacrylate) (PnPMA), are miscible with these copolymers over a certain range of maleic anhydride contents; whereas, the higher methacrylates apparently have no region of miscibility. For PEMA and PnPMA, the miscibility windows extend through 0% MA; hence, polystyrene is miscible with these polymethacrylates although the lower critical solution temperature is quite low. The exothermic heat of mixing styrene and ester analogs found here supports the observed miscibility of polystyrene with ethyl, n-propyl, and cyclohexyl (reported elsewhere) methacrylates. Lattice fluid interaction parameters for styrene-methacrylate obtained from the cloud points of these blends agree quite well with the Flory—Huggins parameters obtained from copolymer miscibility windows.  相似文献   

18.
The thermal stabilities of various poly(alkyl methacrylate) homopolymers and poly(methyl methacrylate-g-dimethyl siloxane) (PMMA-g-PSX) graft copolymers have been determined by thermogravimetric analysis (TGA). As expected, the thermal stabilities of poly(alkyl methacrylates) were a function of the ester alkyl group, and polymerization mechanism. In particular, thermally labile linkages, which result from termination during free radical or nonliving polymerization mechanisms, decrease the ultimate thermal stabilities of the polymers. However, graft copolymers, which were prepared by the macromonomer technique with free radical initiators, exhibited enhanced thermal stability compared to homopolymer controls. A more complex free radical polymerization mechanism for the macromonomer modified polymerization may account for this result. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
Isotactic polypropylene-based graft copolymers linking poly(methyl methacrylate), poly(n-butyl acrylate) and polystyrene were successfully synthesized by a controlled radical polymerization with isotactic polypropylene (iPP) macroinitiator. The hydroxylated iPP, prepared by propylene/10-undecen-1-ol copolymerization with a metallocene/methyl-aluminoxane/triisobutylaluminum catalyst system, was treated with 2-bromoisobutyryl bromide to produce a Br-group containing iPP (PP-g-Br). The resulting PP-g-Br could initiate controlled radical polymerization of methyl methacrylate, n-butyl acrylate and styrene by using a copper catalyst system, leading to a variety of iPP-based graft copolymers with a different content of the corresponding polar segment. These graft copolymers demonstrated unique mechanical properties dependent upon the kind and content of the grafted polar segment.  相似文献   

20.
阴离子聚合法合成PMMA-b-PMTFPS嵌段共聚物   总被引:3,自引:1,他引:2  
以含缩醛官能团的有机锂为引发剂, 将甲基丙烯酸甲酯(MMA)与含氟硅氧烷单体1,3,5-三甲基-1,3,5-三(3',3',3'-三氟丙基)环三硅氧烷(F3)阴离子嵌段共聚, 获得了窄分子量分布的聚甲基丙烯酸甲酯-b-聚[甲基(3,3,3-三氟丙基)硅氧烷](PMMA-b-PMTFPS)嵌段共聚物, 并用GPC, 1H NMR, FTIR和DSC对嵌段共聚物进行了表征. 研究结果表明, 在THF中利用PMMA-OLi对F3进行阴离子开环聚合时, 单体F3浓度的选择对提高嵌段共聚物产率至关重要.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号