首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main process of the electron impact induced water elimination of the title compounds takes a reaction course comprising several individual steps. A characteristic neighbouring group participation of the carbonyl function is involved, onto which a hydrogen is transferred in a first rate-determining reaction step. This rearranged hydrogen is finally lost together with the hydroxyl group. The reaction of N-(2′-hydroxyethyl)piperidone follows what seems to be a [1,1] elimination whereas the H2O elimination from N-(3′-hydroxypropyl)piperidone represents a formal [1,2] elimination.  相似文献   

2.
The H2 and CH4 chemical ionization mass spectra of a series of series of substituted benzoic acids and substituted benzyl alcohols have been determined. For the benzoic acids the major fragmentation reactions of the protonated molecule involve elimination of H2O or elimination of CO2, the latter reaction involving migration of the carboxylic hydrogen to the aromatic ring. For the benzyl alcohols the major fragmentation reactions of [MH]+ involve loss of H2O or CH2O, analogous to the CO2 elimination reaction for the benzoic acids. It is shown that the CO2 and CH2O elimination reactions occur only when a conjugated aromatic ring system is present, and that for the carboxylic acid systems, methyl groups and, to a lesser extent, phenyl groups are capable of migrating. The only discernible effect of substituents on the fragmentation of [MH]+ is an enhancement of the H2O loss reaction in the benzoic acid system when an amino, hydroxyl, or halogen substituent is ortho to the carboxyl function. This ‘ortho’ effect, which differs in scope from that observed in electron impact mass spectra, is attributed to an intramolecular catalysis by the ortho substituent of the 1,3 hydrogen migration in the carbonyl protonated acid followed by H2O elimination. Apparently, this route is favoured over the direct elimination of H2O from the carbonyl protonated acid, since the latter has a high activation energy barrier because of unfavourable orbital symmetry restrictions.  相似文献   

3.
The syntheses, X‐ray structural investigations and calculations of the conformational preferences of the carbonyl substituent with respect to the pyran ring have been carried out for the two title compounds, viz. C15H14N2O2, (II), and C20H16N2O2·C2H3N, (III), respectively. In both mol­ecules, the heterocyclic ring adopts a flattened boat conformation. In (II), the carbonyl group and a double bond of the heterocyclic ring are syn, but in (III) they are anti. The carbonyl group forms a short contact with a methyl group H atom in (II). The dihedral angles between the pseudo‐axial phenyl substituent and the flat part of the pyran ring are 92.7 (1) and 93.2 (1)° in (II) and (III), respectively. In the crystal structure of (II), inter­molecular N—H⋯N and N—H⋯O hydrogen bonds link the mol­ecules into a sheet along the (103) plane, while in (III), they link the mol­ecules into ribbons along the a axis.  相似文献   

4.
The structures of 2‐[N‐(2‐chlorophenyl)carbamoyl]benzenesulfonamide and 2‐[N‐(4‐chlorophenyl)carbamoyl]benzenesulfonamide, both C13H11ClN2O3S, are stabilized by extensive intra‐ and intermolecular hydrogen bonds. In both structures, sulfonamide groups are hydrogen bonded via the N and O atoms and form chains of molecules. The carbamoyl groups are also hydrogen bonded, involving the O and N atoms, further strengthening the polymeric chains running along the c and a axes in the 2‐ and 4‐chloro derivatives, respectively. Carbamoylsulfonamide derivatives are novel compounds with a great potential for medicinal applications.  相似文献   

5.
The (+)‐(αS,1S,4R)‐diastereomer of the title structure, C10H16O3, aggregates in the solid as non‐symmetric dimers with disorder in both carboxyl groups [O·O = 2.710 (5) and 2.638 (5) Å]. The two mol­ecules constituting the asymmetric unit pair around a pseudo‐twofold rotational axis and differ only slightly in their distances and angles, but one methyl group displays rotational disorder absent in the other mol­ecule. Five inter­molecular C—H·O close contacts exist, involving both ketone groups. The (+)‐(αR,1R,4R)‐diastereomer exists in the crystal in its closed‐ring lactol form, (3R,3aR,6R,7aR)‐2,3,3a,4,5,6,7,7a‐octa­hydro‐7a‐hydroxy‐3,6‐dimethyl­benzo[b]furan‐2‐one, C10H16O3, and aggregates as hydrogen‐bonded catemers that extend from the hydroxyl group of one mol­ecule to the carbonyl group of a neighbor screw‐related along b [O·O = 2.830 (3) Å and O—H·O = 169°]. One close inter­molecular C—H·O contact exists involving the carbonyl group.  相似文献   

6.
The silver and acid hydrogen atoms in the crystal structure of [Ag(pa)(Hpa)] n (Hpa?=?3-(1H-benzimidazol-2-yl) propionic acid-N) both lie on special positions of ?1 site symmetry; the silver atom shows linear coordination [Ag–N?=?2.109(3)?Å, N–Ag–N?=?180°]. The ‘acid hydrogen’ links molecules into a linear chain, and hydrogen bonds between the nitrogen-bound hydrogen atom and the carbonyl oxygen atom of an adjacent chain furnish a three-dimensional supramolecular structure. The compound, C20H19AgN4O4, belongs to the triclinic space group P 1 [a?=?6.536(7), b?=?8.127(9), c?=?9.051(1)?Å; α?=?81.692(2), β?=?82.819(2), γ?=?87.229(2)°], and there is one formula unit in the unit cell.  相似文献   

7.
Polymorph (Ia) of eldoral [5‐ethyl‐5‐(piperidin‐1‐yl)barbituric acid or 5‐ethyl‐5‐(piperidin‐1‐yl)‐1,3‐diazinane‐2,4,6‐trione], C11H17N3O3, displays a hydrogen‐bonded layer structure parallel to (100). The piperidine N atom and the barbiturate carbonyl group in the 2‐position are utilized in N—H...N and N—H...O=C hydrogen bonds, respectively. The structure of polymorph (Ib) contains pseudosymmetry elements. The two independent molecules of (Ib) are connected via N—H...O=C(4/6‐position) and N—H...N(piperidine) hydrogen bonds to give a chain structure in the [100] direction. The hydrogen‐bonded layers, parallel to (010), formed in the salt diethylammonium 5‐ethyl‐5‐(piperidin‐1‐yl)barbiturate [or diethylammonium 5‐ethyl‐2,4,6‐trioxo‐5‐(piperidin‐1‐yl)‐1,3‐diazinan‐1‐ide], C4H12N+·C11H16N3O3, (II), closely resemble the corresponding hydrogen‐bonded structure in polymorph (Ia). Like many other 5,5‐disubstituted derivatives of barbituric acid, polymorphs (Ia) and (Ib) contain the R22(8) N—H...O=C hydrogen‐bond motif. However, the overall hydrogen‐bonded chain and layer structures of (Ia) and (Ib) are unique because of the involvement of the hydrogen‐bond acceptor function in the piperidine group.  相似文献   

8.
Hydantoin‐5‐acetic acid [2‐(2,5‐dioxoimidazolidin‐4‐yl)acetic acid] and orotic acid (2,6‐dioxo‐1,2,3,6‐tetrahydropyrimidine‐4‐carboxylic acid) each contain one rigid acceptor–donor–acceptor hydrogen‐bonding site and a flexible side chain, which can adopt different conformations. Since both compounds may be used as coformers for supramolecular complexes, they have been crystallized in order to examine their conformational preferences, giving solvent‐free hydantoin‐5‐acetic acid, C5H6N2O4, (I), and three crystals containing orotic acid, namely, orotic acid dimethyl sulfoxide monosolvate, C5H4N2O4·C2H6OS, (IIa), dimethylammonium orotate–orotic acid (1/1), C2H8N+·C5H3N2O4·C5H4N2O4, (IIb), and dimethylammonium orotate–orotic acid (3/1), 3C2H8N+·3C5H3N2O4·C5H4N2O4, (IIc). The crystal structure of (I) shows a three‐dimensional network, with the acid function located perpendicular to the ring. Interestingly, the hydroxy O atom acts as an acceptor, even though the carbonyl O atom is not involved in any hydrogen bonds. However, in (IIa), (IIb) and (IIc), the acid functions are only slightly twisted out of the ring planes. All H atoms of the acidic functions are directed away from the rings and, with respect to the carbonyl O atoms, they show an antiperiplanar conformation in (I) and synperiplanar conformations in (IIa), (IIb) and (IIc). Furthermore, in (IIa), (IIb) and (IIc), different conformations of the acid O=C—C—N torsion angle are observed, leading to different hydrogen‐bonding arrangements depending on their conformation and composition.  相似文献   

9.
Bromophilic attack by the transition metal carbonyl anion, [Re(CO)5]Na (pKa = 21.1), on 2-(1-bromoalkylidene)thiazolidin-4-ones is significantly faster than abstraction of an acidic lactam hydrogen (pKa ∼17-18), when the generated carbanion is stabilized by an α-CN or α-PhCO group. The bromophilic reaction of 2-(1-bromoalkylidene)thiazolidin-4-one, having an α-CN electron-withdrawing group, resulted in formation of a new metallacyclic anionic complex. With less reactive vinyl bromides, containing an α-CONHPh or α-CO2Et group, only deprotonation is observed. The role of the metal carbonyl anion is highlighted by a comparison with the 9-methylfluorenide carbanion (pKa of 9-methylfluorene is 22.3), which reacts exclusively via a deprotonation pathway.  相似文献   

10.
利用三有机锡氢氧化物和手性配体(4R)-3-[[(2S)-5-氧-2-吡咯烷基]羰基]-4-噻唑烷甲酸(HL)反应合成了3个三有机锡(4R)-3-[[(2S)-5-氧-2-吡咯烷基]羰基]-4-噻唑烷甲酸酯R3SnL[1,R=c-C6H11a),C6H5b),C6H5C(CH32CH2c)],通过元素分析、IR、1H NMR和X-射线单晶衍射表征了其结构。化合物1a属正交晶系,P212121空间群;化合物1b属单斜晶系,P21空间群。二者均为由羧基氧和内酰胺羰基氧桥联配位形成的右螺旋链状有机锡配位聚合物,锡原子具有五配位[SnC3O2]畸变三角双锥构型。化合物1a1b对体外2种人癌细胞Colo205和Bcap37增殖均有强的抑制作用,其活性为1b >1a。  相似文献   

11.
The crystal structure of the title compound, alternatively called 3‐[4‐(benzyl­oxy)­phenyl]‐2‐(Ntert‐butoxy­car­bonyl‐N‐methyl­amino)­propi­onic acid, C22H27NO5, has been studied in order to ex­amine the role of N‐methyl­ation as a determinant of peptide conformation. The conformation of the tert‐butoxy­carbonyl group is transtrans. The side chain has a folded conformation and the two phenyl rings are effectively perpendicular to one another. The carboxyl­ate hydroxyl group and the urethane carbonyl group form a strong intermolecular O—H?O hydrogen bond.  相似文献   

12.
利用三有机锡氢氧化物和手性配体(4R)-3-[[(2S)-5-氧-2-吡咯烷基]羰基]-4-噻唑烷甲酸(HL)反应合成了3个三有机锡(4R)-3-[[(2S)-5-氧-2-吡咯烷基]羰基]-4-噻唑烷甲酸酯R3SnL[1,R=c-C6H11(a),C6H5(b),C6H5C(CH3)2CH2(c)],通过元素分析、IR、1H NMR和X-射线单晶衍射表征了其结构。化合物1a属正交晶系,P212121空间群;化合物1b属单斜晶系,P21空间群。二者均为由羧基氧和内酰胺羰基氧桥联配位形成的右螺旋链状有机锡配位聚合物,锡原子具有五配位[SnC3O2]畸变三角双锥构型。化合物1a和1b对体外2种人癌细胞Colo205和Bcap37增殖均有强的抑制作用,其活性为1b1a。  相似文献   

13.
In the title compounds, 2‐methoxyethyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C21H20N2O4, (II), isopropyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C21H20N2O3, (III), and ethyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C20H18N2O3, (IV), the heterocyclic pyran ring adopts a flattened boat conformation. In (II) and (III), the carbonyl group and a double bond of the heterocyclic ring are mutually anti, but in (IV) they are mutually syn. The ester O atoms in (II) and (III) and the carbonyl O atom in (IV) participate in intramolecular C—H...O contacts to form six‐membered rings. The dihedral angles between the naphthalene substituent and the closest four atoms of the heterocyclic ring are 73.3 (1), 71.0 (1) and 74.3 (1)° for (II)–(IV), respectively. In all three structures, only one H atom of the NH2 group takes part in N—H...O [in (II) and (III)] or N—H...N [in (IV)] intermolecular hydrogen bonds, and chains [in (II) and (III)] or dimers [in (IV)] are formed. In (II), weak intermolecular C—H...O and C—H...N hydrogen bonds, and in (III) intermolecular C—H...O hydrogen bonds link the chains into ladders along the a axis.  相似文献   

14.
Tartronic acid forms a hydrogen‐bonded complex, C5H5NO·C3H4O5, (I), with 2‐pyridone, while it forms acid salts, namely 3‐hydroxy­pyridinium hydrogen tartronate, (II), and 4‐hy­droxy­pyridinium hydrogen tartronate, (III), both C5H6NO+·C3H3O5, with 3‐hydroxy­pyridine and 4‐hydroxy­pyridine, respectively. In (I), the pyridone mol­ecules and the acid mol­ecules form R(8) and R(10) hydrogen‐bonded rings, respectively, around the inversion centres. In (II) and (III), the cations and anions are linked by N—H⋯O and O—H⋯O hydrogen bonds to form a hydrogen‐bonded chain. In each of (I), (II) and (III), an intermolecular hydrogen bond is formed between a carboxyl group and the hydroxyl group attached to the central C atom, and in (I), the hydroxyl group participates in an intramolecular hydrogen bond with a carbonyl group. No intermolecular hydrogen bond is formed between the carboxyl groups in (I), or between the carboxyl and carboxyl­ate groups in (II) and (III).  相似文献   

15.
A hydrothermal reaction of a mixture of ZnCO3, phosphoric acid, 1, 10‐phenanthroline in H2O gave rise to large plates of a new zinc phosphate, [(C12H8N2Zn)2(HPO4)(H2PO4)2], I . The structure consists of ZnO3N2 distorted trigonal‐bipyramidal and PO4 tetrahedral units linked through their vertices to give rise to a zero‐dimensional molecular solid (monomer). The structure of the monomer appears to be similar to the secondary building unit (SBU) 4 = 1, commonly found in many fibrous zeolites. To our knowledge, this is the first time this building unit has been isolated. The structure, with a unique composition, is stabilized by hydrogen bond interactions between the terminal —OH groups forms a one‐dimensional molecular wire and also by strong π…π interactions between the 1, 10‐phenanthroline units. Photoluminescence studies show that there is a ligand‐to‐metal charge transfer (LMCT). Crystal data: orthorhombic, space group = Fdd2 (no. 43), a = 40.4669(1), b = 7.4733(2), c = 17.4425(5)Å, V = 5274.9(2)Å3, Z = 8.  相似文献   

16.
《中国化学会会志》2018,65(4):465-471
Electrophoretic behavior of seven benzophenones as a function of the buffer pH was investigated, and their pKa values were determined by capillary zone electrophoresis. The determination of pKa allows us to rationalize the influence of the buffer pH on the migration behavior of benzophenones. The results reveal that both the presence of intramolecular hydrogen bond and the favorable π‐electronic delocalization decrease the degree of the acid dissociation of the hydroxyl groups of hydroxybenzophenones. However, the introduction of a hydroxyl group at the 4‐position or at the 2′‐position of the aromatic ring of hydroxybenzophenones would decrease greatly their pKa1 values. Thus the presence of this type of hydrogen bonding also plays an important role in the acid dissociation of these hydroxybenzophenones.  相似文献   

17.
The mol­ecules of the title compound, C7H5BrO2, form zigzag chains running along the b axis and are stacked in layers perpendicular to the a axis. Intermolecular bonding occurs through hydrogen bonds linking the hydroxyl and carbonyl groups, with an O?O distance of 2.804 (4) Å. The Br atom deviates significantly from the plane of the ring and the aldehyde group is twisted by 7.1 (5)° around the Csp2—Caryl bond. The geometry of the mol­ecule in the crystal is compared to that given by ab initio quantum mechanical calculations for the isolated mol­ecule, using a molecular orbital Hartree–Fock method and density functional theory.  相似文献   

18.
The reaction of amino-N(4),N(4)-dimethylaminornethylenehydrazones 1 of some aliphatic carbonyl compounds with ethyl ethoxymethylenecyanoacetate 2 gave directly symmetrical gem-bis(3-dimethylamino-1, 2, 4-triazol-1-yl)alkanes 4 and (3-dimethylamino-1, 2, 4-triazol-1-yl)alkenes 5 at room temperature, with the former being major product. On the other hand, the reaction of amino- N (4)-methylaminomethylenehydrazone homologue 1 of aliphatic ketone with 2 gave ethyl 2-alkyl-5-methylamino[1, 2, 4]triazolo[1, 5-c]pyrimidine-8-carboxylate 7 as the only product with elimination of alkane.  相似文献   

19.
The transparent dark orange compounds Cs2[Pd(N3)4] and Rb2[Pd(N3)42/3H2O are synthesized by reaction of the respective binary alkali metal azides with K2PdCl4 in aqueous solutions. According to single‐crystal X‐ray diffraction investigations, the novel ternary azidopalladates(II) crystallize in the monoclinic space group P21/c (no. 14) with a = 705.7(2) pm, b = 717.3(2) pm, c = 1125.2(5) pm, β = 104.58(2)°, mP30 for Cs2[Pd(N3)4] and a = 1041.4(1) pm, b = 1292.9(2) pm, c = 1198.7(1) pm, β = 91.93(1)°, mP102 for Rb2[Pd(N3)42/3H2O, respectively. Predominant structural features of both compounds are discrete [PdII(N3)4]2– anions with palladium in a planar coordination by nitrogen, but differing in point group symmetries., The vibrational spectra of the compounds are analyzed based on the idealized point group C4h of the spectroscopically relevant unit, [Pd(N3)4]2– taking into account the site symmetry splitting due to the symmetry reduction in the solid phase.  相似文献   

20.
Methyl 2‐benzamido‐4‐(3,4‐dimethoxyphenyl)‐5‐methylbenzoate, C24H23NO5, (Ia), and N‐{5‐benzoyl‐2‐[(Z)‐2‐methoxyethenyl]‐4‐methylphenyl}benzamide, C24H21NO3, (IIa), were formed via a Diels–Alder reaction of appropriately substituted 2H‐pyran‐2‐ones and methyl propiolate or (Z)‐1‐methoxybut‐1‐en‐3‐yne, respectively. Each of these cycloadditions might yield two different regioisomers, but just one was obtained in each case. In (Ia), an intramolecular N—H...O hydrogen bond closes a six‐membered ring. A chain is formed due to aromatic π–π interactions, and a three‐dimensional framework structure is formed by a combination of C—H...O and C—H...π(arene) hydrogen bonds. Compound (IIa) was formed not only regioselectively but also chemoselectively, with just the triple bond reacting and the double bond remaining unchanged. Compound (IIa) crystallizes as N—H...O hydrogen‐bonded dimers stabilized by aromatic π–π interactions. Dimers of (IIa) are connected into a chain by weak C—H...π(arene) interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号