首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of 2,3-dichloroquinoxalines with 2-amino-6-picoline-3-thiol gave a mixture of 2,3-bis(2-amino-6-picolinyl-3-thio)quinoxalines ( 16 , R = H, CI) and 2,3-bis (N,N-dimethylamino)quinoxalines ( 15 , R = H, CI) separated by fractional crystallization. A similar reaction of 3-amino-6-methoxypyridine-2(1H)-thione ( 9 ) with 4,5-dichloropyridazin-3(2H)-one ( 21 ) gave 4-chloro-5-(3-amino-6-methoxypyridyl-2-thio)pyridazin-3(2H)-one ( 22 ). Concentrated hydrochloric acid-catalysed cyclization of 22 gave the non-rearranged 7-methoxy-2,3,6-triazaphenothiazin-1(2H)-one. The action of compound 22 in refluxing glacial acetic acid gave, on the other hand, 7-methoxy-2,3,6-triazaphenothiazin-4(3H)-one via a Smiles rearrangement. These cyclized compounds are the first known derivatives of the new 2,3,6-triazaphenothiazine ring system.  相似文献   

2.
The reaction of 3,7-dichlorobisisothiazolo[4,5-b:4",5"-e]pyrazine with MeONa in MeOH afforded 3-chloro-5,6-dimethoxyisothiazolo[4,5-b]pyrazine. The reactions of the former with benzylamine, morpholine, and aniline gave rise to the corresponding N,N"-bis(5-amino-3-chloroisothiazol-4-yl)diazenes. In the case of benzylamine, 3,7-bis(benzylamino)bisisothiazolo[4,5-b:4",5"-e]pyrazine was isolated as a by-product. The crystal structure of N,N"-bis(5-benzylamino-3-chloroisothiazol-4-yl)diazene was established by X-ray diffraction analysis.  相似文献   

3.
On the Synthesis of Sulfonated Derivatives of 2,3-Dimethylaniline and 3,4-Dimethylaniline Baking the hydrogensulfate salt of 2,3-dimethylaniline ( 1 ) or of 3,4-dimethylaniline ( 2 ) led to 4-amino-2,3-dimethylbenzenesulfonic acid ( 4 ) and 2-amino-4,5-dimethylbenzenesulfonic acid ( 5 ), respectively (Scheme 1). The sulfonic acid 5 was also obtained by treatment of 2 with sulfuric acid or by reaction of 2 with amidosulfuric acid. 3-Amino-4,5-dimethylbenzenesulfonic acid ( 3 ) and 5-Amino-2,3-dimethylbenzenesulfonic acid ( 6 ) were prepared by sulfonation of 1,2-dimethyl-3-nitrobenzene ( 9 ) to 3,4-dimethyl-5-nitrobenzenesulfonic acid ( 11 ) and of 1,2-dimethyl-4-nitrobenzene ( 10 ) to 2,3-dimethyl-5-nitrobenzenesulfonic acid ( 12 ), respectively, with subsequent Béchamp reduction (Scheme 1). Preparations of 2-amino-3,4-dimethylbenzenesulfonic acid ( 7 ) and of 6-amino-2,3-dimethylbenzenesulfonic acid ( 8 ) were achieved by the sulfur dioxide treatment of the diazonium chlorides derived from 3,4-dimethyl-2-nitroaniline ( 24 ) and from 2,3-dimethyl-6-nitroaniline ( 31 ) to 3,4-dimethyl-2-nitrobenzenesulfonyl chloride ( 29 ) and 2,3-dimethyl-6-nitrobenzenesulfonyl chloride ( 32 ), respectively, followed by hydrolysis to 3,4-dimethyl-2-nitrobenzenesulfonic acid ( 30 ) and 2,3-dimethyl-6-nitrobenzenesulfonic acid ( 33 ), and final reduction (Scheme 3). Compound 7 was also synthesized by reaction of 4-chloro-2,3-dimethylaniline ( 23 ) with amidosulfuric acid to 2-amino-5-chloro-3,4-dimethylbenzenesulfonic acid ( 20 ) and subsequent hydrogenolysis (Scheme 2). 4′-Bromo-2′, 3′-dimethyl-acetanilide ( 13 ) and 4′-chloro-2′, 3′-dimethyl-acetanilide ( 14 ) on treatment with oleum yielded 5-acetylamino-2-bromo-3,4-dimethylbenzenesulfonic acid ( 17 ) and 5-acetylamino-2-chloro-3,4-dimethylbenzenesulfonic acid ( 18 ), respectively. Their structures were proven by hydrolysis to 5-amino-2-bromo-3,4-dimethylbenzenesulfonic acid ( 21 ) and 5-amino-2-chloro-3,4-dimethylbenzenesulfonic acid ( 22 ), followed by reductive dehalogenation to 3 .  相似文献   

4.
Several new acyclonucleoside purine and 8-azapurine analogs have been prepared from 2-amino-4,6-dichloropyrimidine ( 1 ) and 3-amino-1,2-propanediol ( 2a ) and 4-amino-1-butanol ( 2b ), respectively, as the starting materials. The new target compounds are: 2-amino-6-chloro-9-(2,3-dihydroxypropyl)purine ( 6a ), 2-amino-6-chloro-9-(4-hydroxybutyl)purine ( 6b ), 2-amino-6-chloro-9-(2,3-dihydroxypropyl)-8-azapurine ( 7a ), 2-amino-6-chloro-9-(4-hydroxybutyl)-8-azapurine ( 7b ), 9-(2,3-dihydroxypropyl)-8-azaguanine ( 8a ), 9-(4-hydroxybutyl)-8-azaguanine ( 8b ), 9-(2,3-dihydroxypropyl)-8-azathioguanine ( 9a ), and 9-(4-hydroxybutyl)-8-azathioguanine ( 9b ). Also, the requisite intermediate pyrimidine derivatives, 2,5-diamino-4-(2,3-dihydroxypropylamino)-6-chloropyrimidine ( 5a ) and 2,5-diamino-4-(4-hydroxybutylamino)-6-chloropyrimidine ( 5b ) are novel.  相似文献   

5.
Epoxy-1,1,2-triehloroethane (1) was synthesized by the autuoxidation of trichloroethylene and was characterized. It was shown to react readily with 2-mercaptobenzirnidazole (2), 1 -melhyl-2-mercaptoimidazole ( 3 ), p-nitrolhiophenol ( 4 ), and 3,4-dichlorolhiophenol ( 5 ) forming 2-chloro-2-(benzirnidazole-2-thio)acelie acid ( 6 ), 2-ehloro-2-(1-methylirnidazole-2-thio)aeetic acid (characterized as methyl ester ( 8 )), 2-chloro-2-(4-nitrolhiothiophenoxy)-4-nilrophenylthioaeetate (9), and 2-chloro-2-(3,4-dichlorothiophenoxy)-3,4-dichlorophenylthioaeetale ( 10 ), respectively. Base hydrolysis of 9 yielded 2,2-di(4-nilrothiophenoxy)acetie acid ( 11 ). Adducl 9 decomposed on silica gel yielding p-nitrophcnyldisulfide ( 12 ).  相似文献   

6.
Two bis-(6-chloropurines) bridged by conformationally restricted tethers were synthesized as potential DNA bis-intercalating agents. Reduction of 4,6-dichloro-5-nitropyrimidine ( 1 ) afforded 5-amino-4,6-dichloropyrimidine ( 2 ) which was then used as the starting material. Reaction of 2 with 4,4′-diaminodiphenylmethane ( 3 ) and bis-(4-aminophenyl) ether ( 4 ) yielded bis-[4-(N-5-amino-4-chloro-6-pyrimidyl)aminophenyl]methane ( 5 ) and bis-[4-(N-5-amino-4-chloro-6-pyrimidyl)aminophenyl] ether ( 6 ), respectively. Acid-catalyzed condensation of the above pyrimidines, 5 and 6 , with triethyl orthoformate in N,N-dimethylacetamide gave bis-[4-(6-chloro-9-purinyl)phenyl]methane ( 7 ) and bis-[4-(6-chloro-9-purinyl)phenyl] ether ( 8 ). The spectral data on the new compounds will be discussed.  相似文献   

7.
The reaction of 6-chloro-2-hydrazinoquinoxaline 4-oxide 6 with ethyl 2-(ethoxymethylene)-2-cyanoacetate or (1-ethoxyethylidene)malononitrile gave 2-(5-amino-4-ethoxycarbonylpyrazol-1-yl)-6-chloroquinoxaline 4-oxide 7a or 2-(5-amino-4-cyano-3-methylpyrazol-1-yl)-6-chloroquinoxaline 4-oxide 7b , respectively. The reaction of compound 7a or 7b with dimethyl acetylenedicarboxylate resulted in the 1,3-dipolar cycloaddition reaction and then ring transformation to afford 4-(5-amino-4-ethoxycarbonylpyrazol-1-yl)-8-chloro-1,2,3-trismethoxycarbonylpyrrolo[1,2-α]quinoxaline 8a or 4-(5-amino-4-cyano-3-methylpyrazol-1-yl)-8-chloro-1,2,3-trismethoxycarbonylpyrrolo[1,2-α]quinoxaline 8b , respectively.  相似文献   

8.
The first representative of the 8-substituted 4-thiolumazine series has been synthesized. In a sequence of reactions, 4,6-dichloropyrimidin-2-(1H)-one ( 1 ) is first converted into 4-chloro-6-(methylamino)pyrimidin-2(1H)-one ( 6 ), then the Cl-atom displaced by the thioxo group (→7) followed by a coupling reaction with 4-chlorophenyldiazonium chloride to introduce the necessary N-function into the 5-position (→ 9 ; Scheme 1). Reduction of the p-chlorophenylazo group leads to the 6-(methlyamino)-4-thiouracil-5-amine ( 10 ) which on condensation with diacetyl gives 6,7,8-trimethyl-4-thiolumazine ( 8 ). The physical properties of 8 are compared with the 2-thio analog and 6,7,8-trimethyllumazine indicating that 8 possesses the highest acidity and the longest UV absorption.  相似文献   

9.
Although 6-methyl- ( 1 ) and 6-phenylisoxanthopterin ( 2 ) have previously been synthesized, the requirement of high purity necessary for immunological testing has necessitated our development of the first reported synthesis of these compounds by unequivocal methods. In the process of so doing four new pyrazines, ethyl 3-amino-5-chloro-6-methyl-2-pyrazinecarboxylate ( 11 ), N,N-dimethyl-N'-(6-chloro-3-cyano-5-phenylpyrazin-2-yl)methanimidamide ( 16 ), 2-amino-3-ethoxycarbonyl-5-phenylpyrazine 1-oxide ( 19 ), and ethyl 3-amino-5-chloro-6-phenyl-2-pyrazinecarboxylate ( 20 ) were synthesized. Four new pteridines, 7-methoxy-6-methyl-2,4-pteridinediamine ( 7 ), 7-methoxy-6-phenyl-2,4-pteridinediamine ( 17 ), 2-amino-7-ethoxy-6-methyl-4(3H)-pteridinone ( 12 ), and 2-amino-7-ethoxy-6-phenyl-4(3H)-pteridinone ( 21 ) have also been synthesized enroute to these isoxanthopterins.  相似文献   

10.
Nitroso derivatives of imidazo[1,2-a]pyridine ( 11, 13, 14 ), imidazo[1,2-a]pyrimidine ( 15 ), imidazo[1,2-a]pyrazine ( 16 ), imidazo[1,2-b]pyrazole ( 17 ), and imidazo[1,2-b]-1,2,4-triazole ( 19 ) were obtained in good yields from α-ketohydroximoyl chlorides 3 and 2-aminopyridines ( 4–6 ), 2-aminopyrimidine ( 7 ), 2-aminopyrazine ( 8 ), 5-amino-3-phenylpyrazole ( 9 ), and 3-amino-2H-1,2,4-triazole ( 10 ), respectively. Under different conditions, the reaction of 3 with 3-amino-2H-1,2,4-triazole ( 10 ) and 2-aminopyrazine ( 8 ) afforded the noncyclized substitution products 18 and 22 , respectively. The structures of the products were assigned and confirmed on the basis of their elemental analyses, spectral data, and alternate synthesis wherever possible.  相似文献   

11.
EPR spectroscopy was used to assess the radicals produced upon basic decomposition of N,N-bis-(3-chloro-1,4-naphthoquinon-2-yl) amine (BClNQA). Three radicals have been trapped and identified: N-bis(3-chloro-1,4-naphthoquinone) hydrazine radical (6), 2-hydroxy-3-chloro-1,4-naphthoquinone anion radical (9) and 2-amino-3-chloro-1,4-naphthoquinone radical (8). The probable reaction mechanism, the structure of intermediates as well as the reaction profile are discussed.  相似文献   

12.
It has been found that malonodinitrile and 2-(6-R1-oxo-3,4-dihydro-2-quinazolyl)acetonitrile in the presence of triethylamine undergo hetarylation by 5,6-dichloro-2,3-pyrazinedicarbonitrile at the active methylene group to give the triethylammonium salt of 2-(3-chloro-5,6-dicyano-2-pyrazinyl)malononitrile or 5-chloro-6-cyano(6-R1-4-oxo-1,2,3,4-tetrahydro-2-quinazolylidene)methyl-2,3-pyrazinedicarbonitriles. Reaction of these with primary amines leads to annelation of the pyrrole ring at the pyrazine [b] edge to give 6-amino-5-R-5H-pyrrolo[2,3-b]pyrazine-2,3,7-tricarbonitriles and 6-amino-5-R2-7-(6-R1-4-oxo-3,4-dihydro-2-quinazolyl)-5H-pyrrolo[2,3-b]pyrazine-2,3-dicarbonitriles respectively.  相似文献   

13.
A simple and high-yield synthesis of biologically significant 2′-deoxy-6-thioguanosine ( 11 ), ara-6-thioguanine ( 16 ) and araG ( 17 ) has been accomplished employing the Stereospecific sodium salt glycosylation method. Glycosylation of the sodium salt of 6-chloro- and 2-amino-6-chloropurine ( 1 and 2 , respectively) with 1-chloro-2-deoxy-3,5-di-O-(p-toluoyl)-α-D-erythro-pentofuranose ( 3 ) gave the corresponding N-9 substituted nucleosides as major products with the β-anomeric configuration ( 4 and 5 , respectively) along with a minor amount of the N-7 positional isomers ( 6 and 7 ). Treatment of 4 with hydrogen sulfide in methanol containing sodium methoxide gave 2′-deoxy-6-thioinosine ( 10 ) in 93% yield. Similarly, 5 was transformed into 2′-deoxy-6-thioguanosine (β-TGdR, 11 ) in 71 % yield. Reaction of the sodium salt of 2 with 1-chloro-2,3,5-tri-O-benzyl-α-D-arabinofuranose ( 8 ) gave N-7 and N-9 glycosylated products 13 and 9 , respectively. Debenzylation of 9 with boron trichloride at ?78° gave the versatile intermediate 2-amino-6-chloro-9-β-D-arabinofuranosyl-purine ( 14 ) in 62% yield. Direct treatment of 14 with sodium hydrosulfide furnished ara-6-thioguanine ( 16 ). Alkaline hydrolysis of 14 readily gave 9-β-D-arabinofuranosylguanine (araG, 17 ), which on subsequent phosphorylation with phosphorus oxychloride in trimethyl phosphate afforded araG 5′-monophosphate ( 18 ).  相似文献   

14.
Syntheses of Sulfonated Derivatives of 4-Amino-1, 3-dimethylbenzene and 2-Amino-1, 3-dimethylbenzene Direct sulfonation of 4-amino-1, 3-dimethylbenzene (1) and sulfonation of 4-nitro-1,3-dimethylbenzene ( 4 ) to 4-nitro-1,3-dimethylbenzene-6-sulfonic acid ( 3 ) followed by reduction yield 4-amino-1,3-dimethylbenzene-6-sulfonic acid ( 2 ). The isomeric 5-sulfonic acid ( 5 ) however is prepared solely by baking the acid sulfate salt of 1 . Reaction of sulfur dioxide with the diazonium chloride derived from 2-amino-4-nitro-1,3-dimethylbenzene ( 7 ) leads to 4-nitro-1,3-dimethylbenzene-2-sulfonyl chloride ( 8 ), which is successively hydrolyzed to 4-nitro-1,3-dimethylbenzene-2-sulfonic acid ( 9 ) and reduced to 4-amino-1, 3-dimethylbenzene-2-sulfonic acid ( 6 ). Treatment of 4-amino-6-bromo-1,3-dimethylbenzene ( 12 ) and 4-amino-6-chloro-1, 3-dimethylbenzene ( 13 ), the former obtained by reduction of 4-chloro-6-nitro-1,3-dimethyl-benzene ( 10 ) and the latter from 4-chloro-6-nitro-1, 3-dimethylbenzene ( 11 ), with oleum yield 4-amino-6-bromo-1,3-dimethylbenzene-2-sulfonic acid ( 14 ) and 4-amino-6-chloro-1,3-dimethylbenzene-2-sulfonic acid ( 15 ) respectively; subsequent carbon-halogen hydrogenolyses of 14 and 15 lead also to 6 (Scheme 1). Baking the acid sulfate salt of 2-amino-1, 3-dimethylbenzene ( 17 ) gives 2-amino-1, 3-dimethylbenzene-5-sulfonic acid ( 16 ), whereas the isomeric 4-sulfonic acid ( 18 ) can be prepared by either of the following three possible pathways: Sulfonation of 2-nitro-1,3-dimethylbenzene ( 20 ) to 2-nitro-1,3-dimethylbenzene-4-sulfonic acid ( 21 ) followed by reduction or sulfonation of 2-acetylamino-1,3-dimethylbenzene ( 19 ) to 2-acetylamino-1,3-dimethylbenzene-4-sulfonic acid ( 22 ) with subsequent hydrolysis or direct sulfonation of 17 . Further sulfonation of 18 yields 2-amino 1,3-dimethylbenzene-4,6-disulfonic acid ( 23 ), the structure of which is independently confirmed by reduction of unequivocally prepared 2-nitro- 1,:3-dimethylbenzene-4,6-disulfonic acid ( 24 )(Scheme 2).  相似文献   

15.
Cyclization of 2-chloro-6-[(3-chlorophenyl)thio]benzoic acid ( 2 ) gave a mixture of 1,8-, 3 , and 1,6-dichloro-9H-thioxanthen-9-ones 4 . The mixture was converted to 1,8-diamino- 7 , and 1-amino-6-chloro-9H-thioxanthen-9-ones 8 , from which 3 and 4 were prepared separately, respectively. From a mixture of 4 and 3,6-dichloro-9H-thioxanthen-9-one ( 11 ) obtained by cyclizing 4-chloro-2-[(3-chlorophenyl)thio]benzoic acid ( 10 ) was separated 11 by conversion of 4 to 8 .  相似文献   

16.
Reactions of 1,3-bis(3-chloro-2-hydroxypropyl)uracil, 1,3-bis(3-chloro-2-hydroxypropyl)-6-methyluracil, 1,3-bis(3-chloro-2-hydroxypropyl)-5-hydroxy-6-methyluracil, and 1,3-bis(3-chloro-2-hydroxypropyl)-5-fluorouracil with 2-amino-4-methylthiobutanoic acid (methionine) were studied for the first time.  相似文献   

17.
As a part of metabolic studies of mosapride ( 1 ), a potential gastroprokinetic agent, the synthesis of 4-chloro-7-ethoxy-2(3H)-benzoxazolone-6-carboxylic acid ( 7 ) as a derivative of 4-amino-5-chloro-2-ethoxy-3-hydroxybenzoic acid ( 6 ), which has served a benzoic acid part of the metabolites 4 and 5 , is described. Treatment of methyl 3-amino-4-substituted amino-5-chloro-2-ethoxybenzoate derivatives 11a-c with sodium nitrate in acidic medium gave the benzotriazole derivatives 13x,y instead of the objective 3-hydroxy counterpart. The synthesis of 7 started from o-vanillin acetate ( 15 ) and proceeded through the intermediates 2-hydroxy-3-methoxy-4-nitrobenzaldehyde ( 18 ), methyl 4-amino-2,3-dihydroxybenzoate ( 23 ), and methyl 7-hydroxy-2(3H)-benzoxazolone-6-carboxylate ( 30 ). Compound 30 was alternatively prepared from 23 via methyl 4-ethoxycarbonylamino-2-ethoxycarbonyloxy-3-hydroxybenzoate ( 29 ), which is the product resulting from the migration of the ethoxycarbonyl group of methyl 4-amino-2,3-diethoxycar-bonyloxybenzoate ( 27 ).  相似文献   

18.
Nucleosides of 5-substituted-1,2,4-triazole-3-carboxamides were prepared by the acid-catalyzed fusion procedure and by glycosylation of the appropriate trimethylsilyl derivative. The following nucleosides were obtained in two steps starting from methyl 4-substituted-1,2,4-triazole-3-carboxylates: 5-chloro-1-β- D -ribofuranosyl-1,2,4-triazole-3-carboxamide ( 6 ), 3-chloro-1-β- D -ribofuranosyl-1,2,4-triazole-5-carboxamide ( 5 ), 3-nitro-1-β- D -ribofuranosyl-1,2,4-triazole-5-carboxamide ( 12 ), 3-amino-1-β- D -ribofuranosyl-1,2,4-triazole-5-carboxamide ( 13 ), 5-methyl-1-β- D -ribofuranosyl-1,2,4-triazole-3-carboxamide ( 15 ), and 3-methyl-1-β- D -ribofuranosyl-1,2,4-triazole-5-carboxamide ( 16 ). In addition, 5-amino-1-β- D -ribofuranosyl-1,2,4-triazole-3-carboxamide ( 7 ), and 1-β- D -ribofuranosyl-1,2,4-triazole-3-carboxamide-5-thiol ( 8 ) were prepared from 6 .  相似文献   

19.
Densely substituted methyl 5-amino-4-aryl-7-methyl-2-methylthio-7H-pyrrolo[2,3-d]pyrimidine-6-carboxy- lates were synthesized by the palladium-catalyzed cross-coupling reaction of methyl 5-amino-4-chloro-7-methyl-2-methylthio-7H-pyrrolo[2,3-d]pyrimidine-6-carboxylate with arylboronic acids using Pd(OAc)2/dicyclohexyl(2-biphenyl)phosphine/K3PO4 as a catalyst system. Reaction of methyl 5-amino-4-chloro-7-methyl-2-methylthio-7H-pyrrolo[2,3-d]pyrimidine-6-carboxylate with 2-formylphenyl- boronic acid led to a novel heterocyclic system – 1,3,4,6-tetraazadibenzo[cd,f]azulene.  相似文献   

20.
Synthesis of alkenyl derivatives of certain purines and purine analogs is described. Direct alkylation of the sodium salt of 6-chloropurine (1) either with 1-bromo-2-pentene or 4-bromo-2-methyl-2-butene in N,N-dimethylformamide furnished N-7, 4a and N-9, 3a , 3b alkenyl derivatives. Similar alkylation of 2-amino-6-chloropurine (2) provided the corresponding N-7, 4c-4e and N-9, 3c-3e alkenyl derivatives. Acid hydrolysis of these chloro derivatives 3a-3e, 4a,c-e furnished the corresponding alkenyl hypoxan-thines 6a, 6b and 7a or alkenyl guanines 6c-6e and 7c-7e. Treatment of 3a-3d with thiourea in absolute ethanol provided the corresponding 6-thio derivatives 5a-5d. Alkylation of the sodium salt of either purine-6-carboxamide (8) or 1,2,4-triazole-3-carboxamide (10) gave mainly one isomer 9a, 9b and 11a, 11b. The direct alkylation of pyrrolo[2,3-d]pyrimidin-4(3H)-one (12) gave N-3 alkenyl derivatives 13a, 13b , and the N-7 alkenyl derivatives 16a, 16b have been prepared starting from the 4-chloro derivative 14 . Synthesis of 2-amino-7-(2-penten-1-yl)pyrrolo[2,3-d]pyrimidin-4(3H)-one (19a) has been accomplished starting from 2-amino-4-methoxypyrrolo[2,3-d]pyrimidine (17) . These alkenyl derivatives were found to be devoid of anti-HCMV activity in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号