首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A general analytical approach is devised to treat the NMR data of stereoirregular and regioirregular homopolymers. The methodology is based on the four-component copolymerization model, treating normal and inverted monomer and the levo and dextro configurations as “comonomers”. In this way, the effects of monomer inversion and tacticity can be separately deduced. The analytical approach has been computerized. From the conditional probabilities, information on propagation mechanism (chain-end or catalytic-site control) can be obtained. The model has been used to analyze the NMR data of poly(propylene) samples made with titanium, vanadium and group IV metallocene catalysts. Comparisons have been made between model parameters and polymer microstructure.  相似文献   

2.
If their thermal conductivity can be lowered, polyacetylene (PA) and polyaniline (PANI) offer examples of electrically conducting polymers that can have potential use as thermoelectrics. Thermal transport in such polymers is primarily influenced by bonded interactions and chain orientations relative to the direction of heat transfer. We employ molecular dynamics simulations to investigate two mechanisms to control the phonon thermal transport in PANI and PA, namely, (1) mechanical strain and (2) polymer combinations. The molecular configurations of PA and PANI have a significant influence on their thermal transport characteristics. The axial thermal conductivity increases when a polymer is axially stretched but decreases under transverse tension. Since the strain dependence of the thermal conductivity is related to the phonon scattering among neighboring polymer chains, this behavior is examined through Herman's orientation factor that quantifies the degree of chain alignment in a given direction. The conductivity is enhanced as adjacent chains become more aligned along the direction of heat conduction but diminishes when they are orthogonally oriented to it. Physically combining these polymers reduces the thermal conductivity, which reaches a minimum value for a 2:3 PANI/PA chain ratio.  相似文献   

3.
Phenomenologically, a primary dopant for a conducting polymer is a substance which drastically changes the electronic, optical, magnetic, and/or structural properties of the polymer and is accompanied by a large increase in conductivity. Phenomenologically, a secondary dopant is an apparently “inert” substance which, when applied to a primary-doped polymer, induces still further changes in the above properties including a further increase in conductivity. The concept of secondary doping will be illustrated using polyaniline and its derivatives.  相似文献   

4.
The gas-phase internal elimination (E(i)) reaction of the sulfoxide (-SO-CH(3)) precursors of ethylene and model oligomers of PPV and PITN has been investigated by means of Hartree-Fock, M?ller-Plesset (second and fourth order), and Density Functional Theory (B3LYP, MPW1K) calculations. Considerable differences between the obtained ground state and transition state geometries and the calculated activation energies are observed from one approach to the other, justifying first a careful calibration against the results of a benchmark CCSD(T) study of the E(i) reaction leading to ethylene. In comparison with the CCSD(T) results, as well as with available experimental data, DFT calculations along with the MPW1K functional are found to be a very appropriate choice for describing the E(i) pathway. The leading conformations of the precursors, the relevant transition state structures, and the energy barriers encountered along the lowest energy path to unsubstituted, alpha and beta chloro-, methoxy-, and cyano-substituted ethylene, styrene, stilbene in its cis and trans forms, and at last trans-biisothianaphthene have therefore been identified and characterized in detail employing DFT (MPW1K). Depending on the substituents attached to the C(alpha) and C(beta) atoms, different reaction mechanisms are observed.  相似文献   

5.
Electroactive conducting polymers for corrosion control   总被引:1,自引:0,他引:1  
This paper reviews the literature describing the effects of conducting polymer coatings on the corrosion rate of ferrous alloys (iron, steel and stainless steel). The literature is interpreted in terms of the proposed mechanisms of corrosion protection: barrier, inhibitor, anodic protection and the mediation of oxygen reduction. The most intriguing aspect of the reported literature are the studies demonstrating corrosion protection when deliberate defects were introduced into the coating to expose the bare metal. These studies show that protection afforded by conducting polymer coatings is not due to simple barrier protection or inhibition alone. Many studies illustrate that the polymer/metal interface is modified to produce passivating oxide layers and that charge transfer reactions occur between the metal and polymer. These studies support the proposed anodic protection mechanism, as do the reports of significant ennoblism. On the other hand, there is considerable variation in the reported shift in corrosion potential and these highlight the influence of substrate preparation, coating composition and mode of application and the nature of the electrolyte on the corrosion protection provided by the conducting polymer. For example, the evidence suggests that the emeraldine base form of polyaniline is superior to the emeraldine salt in terms of corrosion protection for steel. However, the number of direct comparisons is small and the reasons for the differences are not well understood. Also not well understood are the role of the counterion release and local pH changes on pinhole protection. It is also argued that the conducting polymer reduces the likelihood of large increases in pH at the polymer/metal interface and so stabilizes the coating against cathodic disbondment. Further work is clearly needed to increase the protection period by further studies on the corrosion protection mechanism so that the polymer composition and processing methods may be optimized.  相似文献   

6.
Electroactive conducting polymers for corrosion control   总被引:1,自引:0,他引:1  
There is an intensive effort underway to develop new corrosion control coatings for structural metals. In part, this effort has been motivated by the desire to replace chromium(VI)-containing coatings currently used for corrosion control of iron and aluminum alloys. Cr(VI) has been shown to be hazardous to the environmental and to human health, and its use in many countries will be sharply curtailed in the coming years. Electroactive conducting polymers (ECPs) represent a class of interesting materials currently being explored for use in corrosion control coating systems, possibly as a replacement for Cr(VI)-based coatings. The electroactivity and the electronic conductivity (or semiconductivity) of ECPs set them apart from traditional organic coatings. As with chromate, interesting and potentially beneficial interactions of ECPs with active metal alloys such as steel and aluminum are anticipated, with concomitant alteration of their corrosion behavior. A review of this active research area will be presented in two parts. Here in Part 1, a general introduction to the topic of corrosion control by ECPs will be presented, including an overview of corrosion and its control by traditional methods, an introduction to ECPs and their properties, and a discussion of the processing issues surrounding the use of ECPs as coatings. Part 1 also includes a review of the literature on the use of ECPs as coatings (or components of coatings) on non-ferrous active metals, principally aluminum and aluminum alloys, although some work on zinc, copper, silver, titanium and silicon will also be described. In Part 2 of this review (to be published in the next issue of this journal), the rather extensive literature on the use of ECPs for the corrosion control of ferrous alloys (steels) will be reviewed. Electronic Publication  相似文献   

7.
Results of density-functional calculations on materials that can be considered being quasi-1D are reported. The materials include some based on carbon (fullerene nanotubes and a polyyne), chains of metal atoms (Pb, Au, and Ag), and charged chains as building blocks of crystals (PtS2 chains surrounded by K atoms and NiN chains separated by Ca atoms). In many cases it is found that 2D or 3D behaviors can be recognized, but in some cases the smaller changes due to the change from true 3D or 2D to quasi-1D have profound effects.  相似文献   

8.
Using a density functional approach we derive the equations describing the equilibrium orientational distribution of a system of chains composed of elongated segments that interact with segments located on other chains through excluded volume interactions and with neighbouring segments of the same chain through a potential that determines the chain flexibility. We analytically determine the limit of stability of the low density isotropic phase as a function of the number of segments and the chain stiffness. The approach turns out to be formally equivalent to a recently proposed mean-field theory by Petschek and Terentjev. Comparison with the Khoklov-Semenov theory shows that the latter is based on an additional assumption that is not valid in an orientationally ordered phase.  相似文献   

9.
指出SSH理论的不足,提出改进与扩充的模型Hamilton量.并对聚乙炔中单双键交替与孤子态的形成机制等作出分析与讨论,提出若干看法,有助于低维电导聚合物理论的完善.  相似文献   

10.
11.
This paper summarizes and reviews the research on electromagnetic interference (EMI) shielding with intrinsically conducting polymers (ICPs), mainly polyaniline (PANI) and polypyrrole (PPY), and their composites in various frequency ranges. ICPs are new alternative candidates for EMI shielding applications due to their lightweight, corrosion resistance, ease of processing, and tunable conductivities as compared with typical metals. More importantly, the dominant shielding characteristic of absorption other than that of reflection for metals render ICPs more promising materials in applications requiring not only high EMI shielding effectiveness but also shielding by absorption, such as in stealth technology. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
This review of the current status of conducting polymers will focus on recent progress which demonstrates that the initial promise of the late 1970's has become reality. Conducting polymers are now available as materials with truly unique properties: They combine the important electronic and optical properties of semiconductors and metals with the attractive mechanical properties and processing advantages of polymers. Conducting polymer blends based upon polyaniline (PANI) are a new class of materials in which the threshold for the onset of electrical conductivity (σ) can be reduced to volume fractions below 1%, well below that required for classical percolation (16% by volume for globular conducting objects dispersed in an insulating matrix in three dimensions). The origin of this remarkably low threshold for the onset of electrical conductivity is the self-assembled network morphology of the PANI polyblends which forms during the course of liquid-liquid separation. Since the average density of the conducting network near threshold is small, the conductivity increases smoothly and continuously over many orders of magnitude as the concentration of conducting polymer increases above threshold. The low percolation threshold and the continuous increase of σ(f) above threshold are particularly important; as a result of this combination, conducting polyblends can be reproducibly fabricated with controlled levels of electrical conductivity while retaining the desired mechanical properties of the matrix polymer.1-3)  相似文献   

13.
Polyphosphonates, a class of polymers with the generic formula –[P(R)(X)–OR'O]n–, exhibit a high degree of modularity due to the range of R, R', and X groups that can be incorporated. As such, these polymers may be designed with a polyethylene oxide (PEO) backbone (R' group) and employed as solid polymer electrolytes (SPEs). Two PEO-containing polyphosphonate analogs (R = Ph; X = S or Se) were doped with LiPF6 and their conductivities were measured. Conductivities were similar (X = S) to or exceeding (X = Se) those of standard PEO systems (just below 10−4 S/cm at 100°C). Binding models for Li+ were generated using 31P{1H}NMR titration experiments. Binding of Li+ by these polyphosphonates followed a positive cooperativity model, and varying the X group (S or Se) affected the observed cooperativity (Hill coefficient = 1.73 and 4.16, respectively). The presence of Se also leads to an increase in conductivity as temperature is raised above the Tg, which is likely an effect of reduced Columbic interactions. Because of their modularity and ease with which cation binding can be evaluated using 31P{1H} NMR titration experiments, polyphosphonates offer a unique approach for the modification of Li+ ion battery technology.  相似文献   

14.
15.
16.
Electronic and vibrational spectra of poly(p-phenylenevinylene) doped with donors or acceptors have been studied, together with the spectra obtained for the radical ions and divalent ions of its oligomers. The electronic absorption spectra of doped poly(p-phenylenevinylene) in the region from visible to near-infrared show two bands for the H2SO4-doped species and one very broad band for the Na-doped species. On the basis of the analyses of resonance Raman spectra, the two electronic absorption bands of the H2SO4-doped species are attributed to a polaron-lattice structure, whereas the broad band of the Na-doped species is attributed to overlapping absorptions associated with localized electronic levels of polarons and bipolarons. A Pauli spin susceptibility of the H2SO4-doped species is explained by the polaron-lattice structure.  相似文献   

17.
18.
19.
In this contribution we report the use of polyaniline and polypyrrole for miniaturized actuators fabricated by microstructural and electrochemical technologies. The potential necessary to drive the actuator is typically less than 1 V, i.e. 2-3 orders of magnitude lower than that necessary for the widespread piezoelectric actuator devices. This low voltage is imperative for future application of actuators of micrometer dimensions. The volume variation of polymers substantially exceeds that of piezoelectric materials. Different contributions to the actuator characteristics are discussed and evaluated semi-quantitatively.  相似文献   

20.
It is demonstrated that spin dynamics study is useful for what kinds of systems, on what theoretical basis of analysis, with what kinds of techniques and to get what kinds of information, showing a nice example of polyacetylene. Usefulness of electron spin resonance (ESR) study is stressed especially in a wide frequency range from 5 to 24000 MHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号