首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Investigations of the particle morphology of poly(vinyl chloride) produced under quiescent conditions during radiation-induced bulk polymerization over the temperature range ?30 to 70°C were carried out. The observations were mainly confined to the early stages of polymerization. For polymerization temperatures below about 20°C, the systems remain predominantly homogeneous during the entire polymerization and the polymer particles increase in size linearly with conversion. At higher temperatures the polymer particles rapidly settle and become cemented together. The findings are discussed in the light of the kinetic data on vinyl chloride polymerization, and a process of particle formation and growth, resembling that recently proposed by Fitch for emulsion systems, was formulated. Primary particles are initially formed by the coiling up of single macromolecules or single macroradicals and, subsequently, they increase in size by sweeping up growing free radicals from the liquid monomer phase. The free radicals which escape capture give rise to new primary particles, but their number progressively decreases as the number of the dispersed particles increases. Simultaneously, the polymer particles undergo flocculation which in a short time results in the formation of large agglomerates. As the volume of the resulting agglomerates increases, the flocculation rate decreases and, eventually, becomes so low that the flocculation does not proceed further. At low temperatures the flocculation almost ceases when the agglomerates are still small enough for sedimentation to occur only very slowly. However, this is not the case at higher temperatures. The addition of substances such as alcohols, brings about a reduction in the flocculation rate and, hence, in the size of the agglomerates formed at the end of the flocculation process. In this way, one can also obtain at high temperatures agglomerates of small sizes which remain dispersed for a long time.  相似文献   

2.
It is established that a small additive of an antioxidant, tris(n-nonylphenyl) phosphite, gives rise to the formation of a polymerization-resistant magnetic fluid stabilized with linoleic acid. The coagulation stability of the fluid is studied with respect to isopropanol. For complete particle sedimentation, an alcohol concentration of 60% is required that is half as much as that for a fluid stabilized with oleic acid. The dispersed phase of the fluid is separated into coarse and fine fractions. Magneto-granulometric analysis of the fractions is carried out. The average magnetic moments of the particles in the fractions differ by approximately two times, and the initial susceptibilities differ by almost an order of magnitude at a close number concentrations of the particles. The temperature dependence of the viscosity of an isooctane-based finely dispersed sample is measured. The mobility of the samples remains preserved down to ?100°C. The temperature dependence of the initial susceptibility of the coarse-dispersed sample exhibits a maximum in the region of ?90°C. The results of the susceptibility measurement are compared with the available theoretical models.  相似文献   

3.
Investigations were carried out on the particle morphology of polyvinyl chloride) obtained in quiescent conditions in the early stages of radiation-induced bulk polymerization at 50°C and 70°C of vinyl chloride with methanol added in small  相似文献   

4.
This research describes a one-step procedure for monodispersed poly(styrene-methyl-methacrylate-acrylic acid colloidal spheres [P(St-MMA-AA)] via soap-seeded emulsion polymerization. The effects ofreaction conditions such as temperature, stirring speed, initiation concentration, e.t.c. were examined. The results obtained showed that the spheres average particle diameter decreased with increase in initiator concentration, the reaction temperature and stirring speed and increased with an increase in monomer concentrations. The particles show stable mechanical properties within the transition and heating temperatures of 111.9?°C and 388?°C respectively. Zeta-potential values ranging from ?31.8?mV to ?36.5?mV which is indicative of stable dispersion of colloidal particles were obtained for all the prepared latexes. The assembled colloidal latex had periodic structures with mainly hexagonal three-dimensional structures with multi-facet arrangements. The latex also shows spherical shape of monodispersed core-shell particles.  相似文献   

5.
This paper reports two important results with cross-linked precipitation polymerization. (1) Acetonitrile, a substance harmful to human health, is the most commonly used solvent for the synthesis of cross-linked polymeric microspheres by precipitation polymerization. Here, the much safer acetic acid replaced acetonitrile as a solvent in the precipitation polymerization of monodisperse cross-linked poly(divinylbenzene) (PDVB-55) microspheres. Pumpkin-like particles and microspheres were obtained. XPS results displayed a significant amount of double bonds on the surface of the particles. The effect of monomer content, temperature, and initiator amount on the formed particles were studied. For a DVB loading below 1 vol % at 70 degrees C, monodisperse microspheres with smooth surfaces and narrow diameters were successfully obtained. With a DVB loading of 2 vol % and by observing the shapes of particles obtained with three different temperature(60, 70, and 80 degrees C), we found that more spherical particles were obtained at higher temperatures and pumpkin-like particles were obtained at lower temperatures. No significant differences in morphology or the coefficient of variation (CV) of the particles were obtained for different initiator loadings, whereas the particle diameters could be increased with increased initiator concentrations. (2) In order to obtain a better understanding of the formation mechanism of these particles, time-dependent experiments, for the first time, were conducted in a hydrophobic monomer system. By tracing the whole polymerization process, some important results were found. First, with the polymerization time at 70 degrees C, the particle diameters were found to increase from 800 nm to 3.0 microm, the CV displayed a decrease, and the amount of spheres and the spherical evenness of the particle surfaces improved. Second, by quantitatively calculating the particle number from the yields and diameters data, it is found that starting from 3.1% yield or two hours reaction time the total amount of particles in the system is almost a constant (about 9.6 x 10 (8)/L), which means that no homocoagulation occurred and no new particles were generated after nucleation, and there is a linear relation between cubic diameters and yields. These two results give us a distinct impression that particle growth almost comes from capturing of newly formed oligomers. Based on the above results, a scheme for the particle formation is proposed, which shows that that pumpkin-like particles are caused by a prolonged nucleation including the homocoagulation of primary nuclei. The growth of the particles includes two modes, an in situ surface polymerization of monomer and the adsorption of PDVB-55 oligomers. The differences between results in acetonitrile and in acetic acid (higher yields, smaller size, not spherical but pumpkin-like particles in acetic acid) were due to the lower solubilizability of acetic acid which is the so-called proton-containing solvent with the hydrogen bonding structure.  相似文献   

6.
Radiation-induced bulk polymerization of vinyl chloride has been carried out under centrifugation at 21°C. The polymerization rate and the molecular weight of the polymer produced were found to remain constant in the low-conversion region and to be equal to the corresponding values that were obtained by extrapolation at zero conversion in normal polymerization. This was at variance with the case of normal polymerization in which both quantities exhibit a continuous increase from the start of the polymerization. Such an increase is to be associated with the presence of large agglomerates, formed through flocculation of initially originated particles, in the liquid monomer phase during the polymerization under quiescent conditions. For the constancy of the kinetic parameters in the polymerization under centrifugation it should be assumed that in the system there remain dispersed only particles not yet flocculated.  相似文献   

7.
Submicron and micron sized particles containing a crosslinked core and a polar shell were prepared by 3-stage nonaqueous dispersion [NAD] polymerization in an aliphatic hydrocarbon medium. When a poly (12-hydroxystearic acid) [PHS] comb stabilizer was used in all three stages, the particles produced were spherical, submicron in size, and had a relatively broad size distribution. If the monomer mixture in the third stage contained relatively large amounts of butyl acrylate, stable dispersions of sponge-like aggregates, 3–5 μm in size, were obtained. When butyl rubber was employed as a stabilizer precursor in the seed formation step, the shape of the final particles depended upon whether a crosslinker was employed in the second stage polymerization. When a crosslinker was present, the second-stage particles and the subsequent third-stage particles had a shrunken, raisin-like appearance. When no crosslinker was present, spherical particles were obtained. In both cases, the resulting third-stage particles were easily dispersed in water containing a small amount of amine base, indicating that ? COOH and ? OH groups are located at the surface (or in a shell at the surface) in these NAD particles. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
The seeded polymerizations of vinyl acetate, using monodisperse poly(vinyl acetate) latex particles prepared in the absence of emulsifiers with potassium persulfate, have been investigated at 70°C with potassium persulfate as an initiator. New small particles were formed in the system containing a small amount of seed particles, but were not observed in the system containing a large amount of seed particles. The size of the secondary particles increased, and their number decreased, with an increase in the seed particle number. The minimum diameter of PVAc particles, which are stabilized by the sulfate ion groups bound at the end of polymer chains during polymerization, was determined to be 0.12 μm diameter from the limiting total surface area of seed particles which prevented further secondary nucleation. The minimum diameter of the particles increased as the speed of the stirrer increased. The new small particle number calculated using this value agreed well with that formed in the seeded polymerization.  相似文献   

9.
Anionic polymerization of methyl methacrylate in THF and toluene at ?70° was studied by means of i.r. spectroscopy. The reaction mixtures show characteristic absorption at 1600–1750 cm?1 caused by the stretching vibrations of the propagating centre as well as by the groups obtained in side reactions (metal splitting, addition to a carbonyl group, cyclization). Sec-butyllithium is more effective in THF than n-butyllithium, ethyllithium and fluorenyllithium. When polymerizing in toluene, small amounts of a donor (THF or HMPT) cause formation of active centres similar to those in pure THF. The “living” ends of oligo-MMA form 1:1 complexes with electron acceptors such as trialkylaluminium and triethylboron.  相似文献   

10.
Butadiene polymerization by polybutadienyl lithium (PBL) has been investigated at 20° in hexane containing amounts of dimethoxyethane (DME) comparable to that of the initiator, and at ?70° in tetrahydrofuran (THF) in the presence of strong electron donors, viz. DME, tetramethyltetraazocyclotetradecane (TMTCT) and dibenzo-18-crown-6. Simultaneously the change in the electric conductivity of PBL in the systems hexane-DME (THF) and THF-DME (TMTCT and crown) was investigated at ?70°. The kinetic and electrochemical data were used to characterize the types of active centres and to estimate their relative contributions to the propagation reaction. Examples are presented showing the ability of polybutadiene to form ion pairs separated by an electron donor.  相似文献   

11.
Anionic living polymerization of α-methylstyrene containing a small amount of THF (less than 10%) was studied at temperatures between ?30°C and 50°C. At any temperature studied, a certain quantity of monomer remained without further polymerization. The effect of temperature and THF content on the final state was completely different in low and high temperature regions; at temperatures lower than ca. 20°C, the final monomer concentration decreased with increasing polymerization temperature and THF content. This is explained by the concept of “stopping of polymerization due to vitrification” of the polymerizing mixture. In fact, the final reaction mixture is really glassy in most cases and the red color of living polymer buried in the glass is discolored only very slowly when exposed to air. Detailed analysis of the results showed that the vitrification stopping holds only approximately. At temperatures higher than ca. 30°C, a normal equilibrium between propagation and depropagation holds, and the final monomer concentration increased with temperature. It is, however, far less than the equilibrium monomer concentration obtained in solution polymerization at the same temperature, and it increased appreciably with the increase in THF content. It is shown that the behavior of the equilibrium for the whole concentration range can be explained satisfactorily by a thermodynamic theory of ternary mixture.  相似文献   

12.
Anionic polymerization of β-methoxypropionaldehyde (MPA) was carried out in tetrahydrofuran (THF) by using benzophenone–monolithium complex as an initiator. An equilibrium between polymerization and depolymerization was observed at a temperature range of ?90 to ?70°C. From the temperature dependence of the equilibrium monomer concentration, thermodynamic parameters for the polymerization of MPA in THF were evaluated as follows: ΔHss = ?4.8 ± 0.2 kcal/mole, ΔHSS = ?22.4 ± 1.3 cal/mole-deg, and (Tc)ss = ?59°C. The thermodynamic change upon the conversion of liquid monomer to condensed polymer was computed from both the partial mixing energy of MPA with THF and the linear relationship between the equilibrium volume fraction of MPA monomer and that of the resulting polymer: ΔH1c = ?4.7 ± 0.2 kcal/mole, ΔS1c = ?19.5 ± 1.3 cal/mole-deg, and (Tc)1c = ?35°C.  相似文献   

13.
Emulsion polymerization of styrene with a nonionic emulsifier (polyoxyethylene nonylphenyl ether, E911) and potassium persulfate as initiator was carried out at different stirring rates (240–500 rpm) at 70 °C, which was started by the addition of initiator after stirring for 100 min at 70 °C. Resulting polystyrene (PS) particles at 240 rpm were 70-nm-sized, spherical particles and incorporated only 5 wt.% of total E911. On the other hand, particles at 500 rpm were 1-μm-sized, nonspherical particles, which were formed by coagulation of small particles, and incorporated above 70 wt.% of E911 in the inside. Before starting emulsion polymerization, E911 and styrene, respectively, transferred from an aqueous phase to a styrene phase and from the styrene phase to the aqueous phase (water and micelles) faster at 500 rpm than 240 rpm. At 240 rpm, there were a lot of almost empty micelles (ca. 5 nm) in the aqueous phase, on the other hand at 500 rpm, 70 wt.% of total E911 transferred to the styrene phase and the micelles were swollen with much monomer (ca. 40 nm) even if the number was smaller. Stirring prior to starting the emulsion polymerization greatly affected partitionings of monomer to the aqueous phase and the nonionic emulsifier to the styrene phase, resulting in the differences in the particle formation and the incorporation of the nonionic emulsifier inside PS particles.  相似文献   

14.
 Monodispersed polystyrene (PS)/poly(n-butyl methacrylate) (PBMA) composite particles having 9.4 μm in diameter were produced by seeded polymerization for the dispersion of highly n-butyl methacrylate (BMA)-swollen PS particles, and their morphologies were examined. The highly BMA-swollen PS particles (about 150 times the weight of the PS seed particles) were prepared by mixing monodispersed 1.8 μm-sized PS seed particles and 0.7 μm sized BMA droplets prepared with an ultrasonic homogenizer in ethanol/water (1/2, w/w) medium at room temperature. After NaNO2 aqueous solution as inhibitor was added in the dispersion, the seeded polymerization was carried out at 70 °C. In an optical microscopic observation, one or two spherical high contrast regions which consisted mainly of PS were observed inside PS/PBMA composite particles. In the PS domain, there were many fine spherical PBMA domains. Such morphologies were based on the phase separation of PS and PBMA within the homogeneous swollen particles during the seeded polymerization. Received: 04 June 1997 Accepted: 27 August 1997  相似文献   

15.
Chain‐free radical polymerization of tetrafluoroethylene (TFE) was carried out in supercritical carbon dioxide (scCO2), at 50 °C and 121–133 bar, with tertiary‐amyl‐per‐pivalate as a free radical initiator, using a 5‐L pilot scale batch reactor. Experiments were carried out both in the absence and in the presence of perfluoropolyether (PFPE) carboxylate surfactants. Stabilizers were employed under the free acid form and as sodium and calcium salts. An expanded fibrillated poly(TFE) was obtained in all experiments. In the case of surfactant‐free polymerizations, the product was mainly constituted by irregular shape macroparticles having size in the range 200–500 μm. Quite interestingly, when the free acid surfactant was used, a clear acceleration of the polymerization rate was observed and smaller polymer particles with more regular quasi‐spherical morphology were obtained. Melt fusion crystallinity of as‐polymerized poly(TFE) seemed not substantially affected by the presence of the stabilizers and was rather high (80–86%) suggesting that polymerization mainly occurs at polymer particle surface. All these elements suggest that FLUOROLINK® 7004H PFPE carboxylic acid decreases coagulation of primary polymer particles leading to an increase in polymer surface area. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 257–266, 2008  相似文献   

16.
Anionic polymerization of methyl methacrylate (MMA) was carried out in tetrahydrofuran (THF) or THF/toluene mixture at ?78°C initiated by triphenylmethyl sodium or lithium as initiators. Highly syndiotactic PMMA of low polydispersity (M w/m n = 1.11–1.17) could be prepared with triphenylmethyl lithium in THF or THF/toluene mixture at ? 78°C. Moreover, PMMA macromonomer having one vinylbenzyl group per polymer chain was prepared by the couplings of living PMMA initiated by triphenylmethyl lithium with p-chloromethyl styrene (CMS) at ?78°C. The coupling reaction of living PMMA initiated by triphenylmethyl sodium with CMS was scarcely occurred.  相似文献   

17.
To study living anionic polymerization, 3‐(triethylsilyl)propyl isocyanate (TEtSPI) monomer was synthesized by hydrosilylation of allylamine with triethylsilane and treatment of the resulting amine with triphosgene. The polymerization of TEtSPI was performed with sodium naphthalenide (Na‐Naph) as an initiator and in the absence and presence of sodium tetraphenylborate (NaBPh4) as an additive in tetrahydrofuran (THF) at ?78 and at ?98 °C. A highly stabilized amidate anion for living polymerization of isocyanates was generated for the first time with the combined effect of the bulky substituent and the shielding action of the additive NaBPh4, extending the living character at least up to 120 min at ?98 °C. Even the anion could exist at ?78 °C for 10 min. A block copolymer, poly(n‐hexyl isocyanate)‐b‐poly[(3‐triethylsilyl)propyl isocyanate]‐b‐poly(n‐hexyl isocyanate), was synthesized with quantitative yields and controlled molecular weights via living anionic polymerization in THF at ?78 °C for TEtSPI and ?98 °C for n‐hexyl isocyanate, respectively, with Na‐Naph with three times of NaBPh4 as a common ion salt. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 933–940, 2004  相似文献   

18.
The polymerization of methyl α-ethylacrylate was carried out in toluene by n-BuLi at various temperatures. The yield of the polymer decreased with increase in the polymerization temperature and at 30°C and above no polymer was obtained, indicating that the ceiling temperature of this monomer lay between 0 and 30°C. The isotacticity increased with an increase in the polymerization temperature and at 0°C a highly isotactic polymer was obtained. The fractionation of the polymer obtained at ?78°C showed that the polymer was a mixture of isotactic and syndiotactic ones. Upon the addition of a small amount of methanol or water in the polymerization mixture the isotacticity of the polymer increased while the yield decreased. Syndiotactic polymer was obtained in the polymerization by n-BuLi in tetrahydrofuran as well as by diisobutyl aluminum diphenylamide in toluene.  相似文献   

19.
The kinetics of anionic polymerization of α-methylstyrene with Na+ as counterion have been studied in mixed solvents of tetrahydrofuran (THF) and toluene in various compositions at ?25 to 5°C. The ion-pair rate constant k(±) increases by about a factor of 50 at ?10°C, whereas the activation energy decreases from 5.1 to ?2.2 kcal/mole, when THF in the mixed solvent increases from 30 to 100 vol-%. The plot of log k(±) against (D ? 1)/(2D + 1) is a curve, where D is the dielectric constant of the medium. This deviation from linearity is explained in terms of propagation by two types of ion-pairs.  相似文献   

20.
o-Methoxystyrene was polymerized with n-butyllithium (n-BuLi), Na naphthalene, and K dispersion as initiators in tetrahydrofuran (THF) and toluene. The stereoregularity of the polymer was investigated by means of the NMR spectroscopy. The methoxy resonance of the spectrum split into ten components due to the tactic pentads. It was found by x-ray examination that the polymer obtained by n-BuLi in toluene at ?45°C was crystalline and highly isotactic. In THF, the stereospecificity of the polymerization was independent of the initiator, and the isotacticity of the polymer increased with increasing reaction temperature. In toluene, the stereospecificity depended on the initiator; i.e., n-BuLi gave a polymer with higher isotacticity than that given by phenylsodium. The fraction of isotactic triad of the polymer obtained by n-BuLi in toluene at ?78°C was more than 90%, but 50% at 50°C. The presence of ca. 1% THF in toluene led to a steep decrease in the isotacticity even at ?78°C. The tacticity of the polymer given by Na naphthalene was not affected by the existence of NaB(C6H5)4 in THF. The polymerization in THF could be explained by Bovey's “single σ” process, while a penultimate effect was observed in the polymerization by n-BuLi in toluene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号