首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ferroelectric and piezoelectric properties of a new class of polymer ferroelectric and piezoelectric materials, nylon 11/polyvinylidene fluoride (PVF2) bilaminate films, prepared by a co-melt-pressing method, is presented. The bilaminate films exhibit typical ferroelectric D-E hysteresis behavior with a remanent polarization, Pr, of about 75 mC/m2, which is higher than the value of 52 mC/m2 observed for PVF2 or nylon 11 films measured under the same conditions. The coercive field, Ec, of the bilaminate films is ~ 78 MV/m, which is higher than that of either PVF2 or nylon 11 films. Measurements of the temperature dependence of the piezoelectric strain coefficient, d31, and the piezoelectric stress coefficient, e31, were also carried out. The bilaminate films exhibit a piezoelectric strain coefficient, d31, of 41 pC/N at room temperature, which is significantly higher than the PVF2 films (25 pC/N) and the nylon 11 films (3.1 pC/N). When the temperature is increased to 110°C, d31 of the bilaminate films reaches a maximum value of 63 pC/N, more than five times that of PVF2 (11 pC/N) and more than four times that of nylon 11 (14 pC/N) at the same temperature. The piezoelectric stress coefficient, e31, of the bilaminate films shows a value of 109 mC/m2 at room temperature, almost twice that of the PVF2 films (59 mC/m2) and about 18 times that of the nylon 11 films (6.2 mC/m2). Measurement of the temperature dependence of the hydrostatic piezoelectric coefficient, dh, of the bilaminate films also shows an enhancement with respect to the individual components, PVF2 and nylon 11. ©1995 John Wiley & Sons, Inc.  相似文献   

2.
Temperature dependent Brillouin scattering studies of PVF2 films stretched to various stretch ratios have been carried out. Elastic constants for unstretched and stretched films have been obtained as functions of temperature. The elastic constant C33 of the stretched films has a greater temperature dependence than that of unstretched films. To elucidate the effect of the surrounding amorphous matrix on the Brillouin spectrum of semicrystalline PVF2 film, we carried out Brillouin scattering studies of films made from blends of PVF2 and PMMA.  相似文献   

3.
We have examined the poling time dependence of the field-induced phase transition (from phase II to polar phase II) of biaxially oriented poly(vinylidene fluoride) films by x-ray methods. These results were compared with the poling-time dependence of the piezoelectric response (d31 and e31) determined using a piezotron Model U (Toyo Seiki, Tokyo). The piezoelectric response shows an initial rapid increase with poling time followed by a slow increase as the poling time increases. The x-ray results show that the field-induced phase transition is time dependent, and occurs first for those crystallites with their a axes perpendicular to the film surface. Crystallites with a in the plane of the film transform at a much slower rate. The data indicate that the poling time dependence of d31 and e31 (and, presumably, film polarization) are dependent on the transition rates.  相似文献   

4.
In situ Ag nanoparticles are produced on reduction of Ag+ with N,N-dimethylformamide in the presence of poly(vinylidene fluoride) (PVF2). The plasmon band transition is monitored with time in the reaction mixture for three sets of experiments by UV-vis spectroscopy. The plasmon band absorbance increases sigmoidally with log(time). Analysis of the data with the Avrami equation yields an exponent n value between 1.5 and 2.0, indicating two-dimensional nucleation with linear or diffusion controlled growth. The TEM study of the polymer nanocomposites (PNC) indicates both spherical and rodlike morphology for PNC0.5 and PNC2.5 samples, whereas the PNC11 sample has spherical and agglomerated structures (the numerical number associated with PNC indicates percentage (w/w) of Ag in the nanocomposite). The WAXS and FTIR studies indicate the formation of piezoelectric beta-polymorphic PVF2 in the nanocomposites. The DSC study indicates some increase of the melting point and enthalpy of fusion of PVF2 in the nanocomposite, although with increase in Ag nanoparticle concentration the increase is smaller. The crystallization temperatures of PNCs also increased, indicating nucleating effect of Ag nanoparticles in the composite. In the TGA curves, the PNCs exhibit a three-step degradation process. The degradation temperatures of PNCs are lower than that of PVF2. The storage modulus data indicate a significant reinforcement of the mechanical property in the PNCs where also the reinforcement effect decreases with increasing nanoparticle concentration. Both the loss modulus and tan delta plots indicate two peaks; the lower temperature peak has been attributed for glass transition temperature, whereas the higher one has been attributed to a similar type relaxation process for the crystalline-amorphous interface. The increase in the glass transition is marginal for the PNCs, but the increase of later transition temperature is somewhat higher. The FTIR study shows that the dipolar interaction of the >CF2 dipole with the surface charges of Ag nanoparticle stabilizes the nanoparticle in the nanocomposite.  相似文献   

5.
The preparation of polymer blends of poly(methyl methacrylate) and poly(vinylidene fluoride) in different weight percentages is described. Vickers microhardness measurements have been made to study the effects of load and compositional ratio of the two polymers in polyblend. It is observed that poly(vinylidene fluoride) acts as a plasticizer for poly(methyl methacrylate). Evidence of increasing and decreasing strength of polyblends has been obtained for different compositional ratios of the two polymers.  相似文献   

6.
The frequency dependence of dielectric constant ?′, dielectric loss ?″, and dielectric anisotropy were determined for poly(vinylidene fluoride) (PVDF) in microwave frequencies from 4 to 13 GHz. The ?′ and ?″ for PVDF films decreased with increasing frequency. Both ?′ and ?″ were larger in the transverse direction than in the machine direction or draw direction, but the values at 12 GHz were smaller than those observed at 4.0 GHz. The angular dependence of ?″ at microwave frequency reflects the orientational distribution of molecules in the amorphous region. The orientation function was determined to be about 0.04 and 0.01 for uniaxially and biaxially stretched PVDF, respectively. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
The effect of uniaxial orientational drawing and isometric annealing on the ratio of polymorphic modifications in the crystalline phase of poly(vinylidene fluoride) is studied. The role of drawing temperature and draw ratio in the structural rearrangements during polymer deformation is analyzed. The conditions providing the highest content of the polar crystalline phase in the polymer are determined. The mechanical properties of the films drawn at different temperatures are investigated.  相似文献   

8.
A combined optical and electron microscopical study has been carried out of the crystallization habits of poly(vinylidene fluoride) (PVF2) when it is crystallized from blends with noncrystallizable poly(ethyl acrylate) (PEA). The PVF2/PEA weight ratios were 0.5/99.5,5/95, and 15/85. Isothermal crystallization upon cooling the blends from the single-phase liquid region was carried out in the range 135–155°C, in which the polymer crystallizes in the α-orthorhombic unit cell form. The 0.5/99.5 blend yielded multilayered and planar lamellar crystals. The lamellae formed at low undercoolings were lozenge shaped and bounded laterally by {110} faces. This habit is prototypical of the dendritic lateral habits exhibited by the crystals grown from the same blend at high undercoolings as well as by the constituent lamellae in the incipient spherulitic aggregates and banded spherulites that formed from the 5/95 and the 15/85 blends, respectively. In contrast with the planar crystals grown from the 0.5/99.5 blend, the formation of the aggregates grown from the 5/95 blend is governed by a conformationally complex motif of dendritic lamellar growth and proliferation. The development of these aggregates is characterized by the twisting of the orientation of lamellae about their preferential b-axis direction of growth, coupled with a fan-like splaying or spreading of lamellae about that axis. The radial growth in the banded spherulites formed from the 15/85 blend is governed by a radially periodic repetition of a similar lamellar twisting/fan-like spreading growth motif whose recurrence corresponds to the extinction band spacing. This motif differs in its fan-like splaying component from banding due to just a helicoidal twisting of lamellae about the radial direction. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
Poly(vinylidene fluoride) (PVDF) was subjected to a creep test performed at constant true stress. The use of an original method to control and adjust, in real time, the stress allowed the assessment of volume changes occurring during the test. The adaptation of Bucknall's model enabled us to excerpt the component related to microstructural modifications from the whole volume strain. Mechanisms inducing volume strain are temperature dependent. Above ?40 °C and below 80 °C, that is, in between both glass transitions of PVDF, a linear increase of volume strain was observed as a result of polymer damage via the crazing phenomenon. In addition, this region is characterized by the presence of two distinct domains that could be attributed to either nucleation and propagation of voids or to an increase of the number of potential sites for nucleation resulting from microstructural modifications taking place during the test. On the contrary, above the secondary glass transition, a regular decrease of volume strain was observed. It was assigned to a material densification as a result of molecular orientation of the amorphous chain segments. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1754–1759, 2002  相似文献   

10.
This paper investigates the relationship between the pre-annealing conditions and the thermal stability of uniaxially-drawn poly(vinylidene fluoride) (PVDF) films in order to clarify their technical limits in terms of temperatures that can be used for assembly processes and for practical applications. Specimens that are pre-annealed below their melting temperature apparently shrink in the stretch-direction when they are exposed to elevated temperatures above the pre-annealing temperature. Since the content of β-PVDF in the films decreases simultaneously with the shrinkage, their piezoelectric properties also deteriorate. In addition, there is a suggestion that the level of polarization in the remaining β-phase decreases significantly during annealing above 90-100 °C. However, the dimensions and the piezoelectric coefficients of the films remain stable during annealing below the pre-annealing temperature. Therefore, the thermal stability of PVDF films can be controlled practically by using the appropriate pre-annealing temperature. By contrast, the films were softened at 90-100 °C when the pre-annealing treatment was conducted above the melting temperature. The softening of films that are pre-annealed above the melting temperature is a different phenomenon from that observed in specimens that are pre-annealed below the melting temperature.  相似文献   

11.
The piezoelectricity of PVDF thermoelect rets formed with vacuum-coated aluminum electrodes has been investigated in detail. The piezoelectricity depends on the β-form crystal structure of PVDF homopolymer and copolymers. However, the piezoelectricity is not attributed to the stress dependence of the spontaneous polarization of β-form crystals, but rather to the persistent polarization arising from trapped charges. The trapping mechanism is discussed.  相似文献   

12.
The solubility behavior of poly(vinylidene fluoride) (PVDF) in about 50 liquids was investigated. The results were input to a computer program to obtain a three-dimensional representation of the polymer solubility region in the Hansen space; the values of dispersion, hydrogen bonding, and polar components of the total solubility parameter δt,P were evaluated. The latter was also estimated from limiting viscosity number data in the eight solvents found. Both experimental methods gave δt,P values in very good agreement. Comparisons among our findings, the literature, and calculated results are discussed.  相似文献   

13.
14.
A vibrational analysis has been carried out for the two crystalline forms of poly(vinylidene fluoride) (PVF2). The Raman spectrum of the planar form of PVF2 is also reported. The band assignments are made on the basis of the spectral properties including the infrared dichroism and Raman intensities. A force field is derived based on a force constant refinement procedure utilizing the frequency data for both crystal forms.  相似文献   

15.
16.
The thermal expansion behavior of oriented poly(vinylidene fluoride) films has been studied over the temperature range ?75 to +20°C. Representative high draw, low draw, and voided samples have been examined. For all samples at low temperatures the transverse thermal expansion coefficients, both in the plane of the sheet and perpendicular to it, are similar and have positive values of about 10?4 K?1. In the draw direction the thermal expansion coefficients are much smaller in magnitude and can be either positive or negative, the room temperature values varying in the range +4 × 10?6 K?1 for low draw samples to ?14 × 10?6 K?;1 for high draw samples. As the temperature is raised the coefficients also increase but, above the glass transition temperature, the value in the draw direction, α1, shows a rapid fall in value. It is shown that this effect can be related quantitatively to the presence of an internal shrinkage stress. Differences between samples can then be primarily related to differences in the magnitude of this internal stress and to differences in the temperature dependence of the modulus of the sample.  相似文献   

17.
We report the transcrystallinity of poly(vinylidene fluoride) on several different types of substrate materials. The supermolecular structure and its development were characterized with polarization microscopy, whereas differential scanning calorimetry was used for monitoring the isothermal and nonisothermal crystallization kinetics. Although only approximately applicable, an Avrami–Ozawa analysis of the latter yielded reliable exponents, which characterized the transcrystalline nucleation conditions, the related dimensionality of growth, and the resulting texture. The results complemented and agreed quantitatively with those of light microscopy. Several polymers, including poly(ethylene terephthalate), polytetrafluoroethylene, and polyimide, induced distinct transcrystallinity, but only a spherulitic supermolecular structure developed on glass and metallic substrates. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2130–2139, 2001  相似文献   

18.
19.
Two crystalline forms (α and β) of poly(vinylidene fluoride) were studied by infrared spectroscopy. The spectral differences permitted the study of the transformation and the ratio of the two forms. The ordinary \documentclass{article}\pagestyle{empty}\begin{document}$ \vec G,\vec F $\end{document} matrix method was used to calculate the fundamental mode with a Urey-Bradley type potential field, and a preferred set of the force constants was obtained.  相似文献   

20.
Different contents of carbon nanotubes (CNTs) were introduced into a miscible poly(vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) blend. The interfacial affinity between CNTs and components of the blend was evaluated by calculating the interfacial tension. The dispersion and microstructure of CNTs in the nanocomposites were investigated through scanning electron microscope and rheological measurement. The effect of CNTs on the crystallization of PVDF was comparatively investigated through nonisothermal and isothermal crystallization processes. The results showed that CNTs exhibited stronger interfacial affinity to PMMA. Homogeneous dispersion of CNTs in the nanocomposites was achieved. Largely enhanced crystallization temperature and increased crystallinity of PVDF were obtained by adding CNTs during the nonisothermal crystallization process. The results obtained from the isothermal crystallization process proved that CNTs induced the concentration fluctuation in the sample, which resulted in the formation of spherulites with different types, i.e., the banded spherulites and compact spherulites. Furthermore, both the crystallization temperature and the content of CNTs exhibited great influence on the crystalline morphology of PVDF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号