首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of four equivalents of 4‐hydroxyquinolin‐2(1H)‐ones with one equivalent of acenaphthoquinone in absolute ethanol, containing catalytic triethylamine, gave 3,3′,3″,3?‐(1,2‐dihydroacenaphthylene)‐1,1,2,2‐tetrayl‐tetrakis(4‐hydroxyquinolin‐2(1H)‐ones) in a good to excellent yields. The structures of the products were elucidated by 1H NMR, 13C NMR, NMR, IR, mass spectra, and elemental analyses.  相似文献   

2.
The N-phenylbenzo[g]indazole derivatives, 3-(4-chlorophenyl)-3,3a,4,5-tetrahydro-N-phenylbenzo[g]indazole-2-carbothioamide (4CLPBIC), 3-(4-bromophenyl)-3,3a,4,5-tetrahydro-N-phenylbenzo[g]indazole-2-carbothioamide (4BRPBIC), and 3-(3-bromophenyl)-3,3a,4,5-tetrahydro-N-phenylbenzo[g]indazole-2-carbothioamide (3BRPBIC), were synthesized by the one-pot green amalgamation of solvent-free granulating methodology procedure at room temperature. The synthesized crystals were characterized by single-crystal X-ray diffraction (SC-XRD), FT-IR, FT-Raman, NMR, and UV–Vis techniques. The molecular geometries from XRD experimental values of synthesized compounds 4CLPBIC, 4BRPBIC, and 3BRPBIC in the ground state are compared theoretically by applying the density functional theory (DFT), a method with the B3LYP/6-311G(d,p) basis set using Gaussian 09 software. The vibrational assignments of the synthesized compounds were studied based on potential energy distribution (PED) by the VEDA4 program. The scaled DFT/B3LYP/6-311G(d,p) results show the best agreement with the experimental values. Computational 1H and 13C NMR were acquired by utilizing gauge-independent atomic orbital (GIAO) procedure, and chemical shift results are in good agreement with the experimental values. A web-based theoretical investigation was performed to understand the drug-likeness and ADMET properties of the compounds. Molecular docking studies were carried out against bacterial cholesterol inhibitor block and inhibitor of lanosterol-14α-demethylase CYP51 used in the treatment of topical and systemic mycoses in fungal to understand the inhibitory activity of synthesized compounds. The synthesized molecules were also tested for antibacterial and antifungal activities.  相似文献   

3.
This study aimed to carry out complete 1H and 13C NMR assignment of 13 protobassic acid saponins, including arganins A–C ( 1 – 3 ) and F ( 4 ), butyrosides B–D ( 5 – 7 ), tieghemelin ( 8 ), 3′-O-glucosyl-arganin C ( 9 ), Mi-saponins A–C ( 10 – 12 ), and mimusopsin ( 13 ), recorded in methanol-d4. This was accomplished by the analysis of high-resolution one-dimensional (1D) NMR (1H and 13C), two-dimensional (2D) NMR (1H–1H COSY, HSQC, and HMBC), and selectively excited 1D TOCSY spectra. Before this study, 1H and 13C NMR data of arganins A–C ( 1 – 3 ) and F ( 4 ) were partially assigned. Our effort leads to their complete assignment, especially the glycon residue, and revises some reported data. Some revisions of the 1H and 13C NMR data in the glycon part of butyroside C ( 6 ), tieghemelin ( 8 ), Mi-saponin A ( 10 ), and mimusopsin ( 13 ) were made. Those data of butyrosides B and D ( 5 & 7 ) and Mi-saponin B ( 11 ), which had not been recorded in methanol-d4, are provided. In addition, the 1H and 13C NMR data of Mi-saponin C ( 12 ) are reported for the first time. These data, being recorded in methanol-d4, should be more friendly for use as a reference for identifying the related triterpenoid saponins.  相似文献   

4.
The conformation of [bis‐(N,N′‐difluoroboryl)]‐3,3′‐diethyl‐4,4′,8,8′,9,9′,10,10′‐octamethyl‐2,2′‐bidipyrrin (1) in solution was studied by analyzing the 13C? 19F and 19F? 19F through‐space spin–spin couplings. The 1H and 13C NMR spectra were assigned on the basis of nuclear Overhauser effect spectroscopy (NOESY), heteronuclear single‐quantum correlation (HSQC), and heteronuclear multiple‐bond correlation (HMBC) experiments. The 19F spectrum of 1 was compared with that of 2‐ethyl‐1,3,5,6,7‐pentamethyl‐4,4‐difluoro‐4‐bor‐3a,4a‐diaza‐s‐indacen (2). The 19F? 19F through‐space spin? spin coupling in 1 was thus assigned and the coupling constant was obtained by simulating the coupling patterns. The obtained conformation of 1 was compared with those of the known complexes [bis‐(N,N′‐difluoroboryl)]‐3,3′,8,8′,9,9′‐hexaethyl‐4,4′,10,10′‐tetramethyl‐6,6′‐(4‐methylphenyl)‐2,2′‐bidipyrrin (3)and [bis‐(N,N′‐difluoroboryl)]‐9,9′‐diethyl‐4,4′,8,8′,10,10′‐hexamethyl‐3,3′‐bis(methoxycarbonylethyl)‐2,2′‐bidipyrrin (4). The conformational dynamics of 1, 3, and 4 was surveyed by observing the temperature dependence of the through‐space coupling constants between 253 and 333 K. The 13C? 19F and 19F? 19F through‐space spin–spin couplings thus confirm similar conformations of different BisBODIPYs in solution in contrast to earlier findings in the solid state. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
A series of naphthopyrans with hydrazone unit ( 8a – 8m ), were synthesized and characterized by 1H NMR, 13C NMR, IR and HRMS. The photochromic properties were investigated under continuous irradiation, in particular regard to the fatigue resistance and the lifetime of the colored open form in solution and polymers. The results showed that these compounds had both good photochromic properties and high fatigue resistance. Detailed studies showed that representative compound 8d (3,3‐di‐4‐methoxybenzoic acid methylenehydrazino‐[3H]‐naphtho [2,1‐b]pyran) had good photochromic properties in THF solution, in solid state, and in polymers, and exhibited a significant bathochromic shift in the spectra of the open forms compared to known naphthopyrans 9 (3,3‐diphenyl‐[3H]‐naphtho[2,1‐b]pyran). On the other hand, the higher melting points of target compounds are promising for the polymer film preparation through hot‐melt method.  相似文献   

6.
Proton and carbon-13 nmr spectra for cis- and trans-2-ethyl-3,3-diphenyl-4-methyltetrahydrofurans and 2-ethylidene-3,3-diphenyl-4-methyltetrahydrofuran, derived from the pyrolysis of the quaternary ammonium salts of the diastereomeric isomethadols and isomethadone, respectively, are reported. 1H and 13C chemical shifts and 1H-1H coupling constants have been assigned in each case. The isomeric teterahydrofurans have been analyzed in terms of a half-chair conformation, and an envelope conformation for the ethylidene derivative.  相似文献   

7.
An assignment of relative configurations has been achieved for the diastereomeric racemates (1R2R,1S2S) and (1R2S,1S2R) of 3,3-dimethyl-1,2-diphenylbutan-1-ol through the comparative analysis of the respective chemical shifts induced by Eu(fod)3 in the 1H and 13C NMR spectra, and the corresponding conformational distribution.  相似文献   

8.
A new, fast, and easy one‐pot cyclopropanation reaction of aromatic and aliphatic aldehydes with 1H‐indene‐1,3(2H)‐dione and cyanogen bromide (BrCN) was developed for synthesizing 3′‐(aryl[alkyl])‐dispiro[indan‐2,1′‐cyclopropane‐2′,2′′‐indan]‐1,1′′,3,3′′‐tetrone in excellent yields in a short time (about 15 s) under basic media. All structures were characterized using IR, 1H NMR, and 13C NMR spectroscopy techniques.  相似文献   

9.
A simple and appropriate procedure for the synthesis of 4,5‐dihydro‐5‐hydroxy‐3H‐pyrrole‐3,3‐dicarbonitrile derivatives is reported. The advantages of this method are one‐pot conditions, high yield of products, short reaction times, and no need of metal catalyst. The structures are confirmed spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this reaction is proposed (Scheme 2).  相似文献   

10.
A series of novel 3,3′-(3,3′-(dihydroxy/hydroxyethane-1,2-diyl)bis(7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine-6,3-diyl))bis(2H-chromen-2-ones) were prepared by the condensation of thiocarbohydrazide with tartaric acid or malic acid followed by various 3-(2-bromoacetyl)-2H-chromen-2-ones in two steps with good yields. All the synthesized compounds were characterized by analytical and spectral (IR, 1H NMR, 13C NMR, and mass) data. These synthesized bis(triazolothiadiazinyl coumarin) compounds were evaluated for broad spectrum of antiviral activity. Among all the tested compounds, compound 5f exhibited antiviral activity against H1N1 virus. The molecular docking studies of these compounds against H1N1 neuraminidase enzyme were performed. The binding affinity and binding values were compared with standard drugs.  相似文献   

11.
[1-13C]Gly, L-[1-13C]Ala, [15N]Gly, L-[15N]Ala, [2,2-2H2]Gly, L-[3,3-2H2]Ser and [3,3,3-2H3]Ala labeled silk fibroin fibers from Bombyx mori and Samia cynthia ricini silkworms were prepared in order to analyze structure of backbone and dynamics of side chain. The torsion angles ϕ and Ψ were determined from the angular dependent 13C and 15N solid state NMR spectra for uniaxially oriented fiber samples. In addition, the characteristic side chain dynamics of Ser residue determined from solid state 2H NMR measurements was compared with those of Ala and Gly residues.  相似文献   

12.
The CuI‐catalyzed addition of iodine to the C≡C triple bond of 3,3‐diethoxy‐1‐phenyl propyne ( 1 ) unexpectedly leads to the new cyclization products 2,3‐diiodo‐1H‐inden‐1‐one ( 2 ) and 1‐ethoxy‐2,3‐diiodo‐1H‐indene ( 3 ). Both compounds were isolated and characterized via 1H, 13C NMR (Nuclear Magnetic Resonance) spectroscopy and HRMS (High Resolution Mass Spectrometry). The molecular and crystal structures of compounds 2 and 3 were determined by single crystal X‐ray diffraction. Their crystal structures are governed by extensive halogen bonding, involving I·I and I·O interactions.  相似文献   

13.
The assignment of the signals in the 13C and 1H NMR spectra of N-phenyl-2,4-dimethylbuta-1,3-diene-1,4-sultam is difficult for the signal pairs C-2 and C-4, C-1 and C-3, (C-1)? H, (C-2)? CH3 and (C-4)? CH3. The 13C NMR spectrum recorded under gated decoupling conditions provide long-range couplings which make possible an unambiguous assignment of the 13C NMR signal pairs. Application of the 1H CW off-resonance decoupling technique in recording the 13C NMR spectra enables the assignment information from the 13C NMR spectrum to be transferred to the 1H NMR spectrum.  相似文献   

14.
The complete 1H NMR chemical shift assignments of 1,2,3,4,5,6,7,8‐octahydroacridine ( 1 ), 1,2,3,4,5,6,7,8‐octahydro‐9‐(3‐pyridyl)acridine ( 2 ), 1,2,3,4,5,6,7,8‐octahydro‐9‐(4‐pyridyl)acridine ( 3 ) and the corresponding N(10)‐oxides 1a , 2a and 3a , respectively, were achieved on the basis of 400 MHz 1H NMR spectra and proton–proton decoupling, HMQC and NOEDIFF experiments. The spectral data for the above compounds provided the first experimental evidence of the difference in the anisotropy effect of the two non‐symmetrical moieties of the pyridine nucleus, and allowed us to ascertain that the shielding effect of the moiety defined by the C(2′)—N—C(6′) atoms is weaker than that of the C(3′)—C(4′)—C(5′) moiety. The 13C NMR spectra of 1 – 3 and 1a – 3a and the effect of N(10)‐oxidation on the 13C NMR chemical shifts are also discussed. The N‐oxidation of 2 and 3 with m‐chloroperbenzoic acid occurred regiospecifically, affording the N(10)‐oxides 2a and 3a free of N(1′)‐oxide isomers. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
The mycosporine‐like amino acid (MAA) porphyra‐334 ( 1 ) is subjected to extensive 1H‐ and 13C‐NMR analysis as well as to density‐functional‐theory (DFT) calculations. All 1H‐ and 13C‐NMR signals of 1 are assigned, as well as the resonances of prochiral proton pairs. This is achieved by 500‐MHz standard COSY, HMQC, and HMBC experiments, as well as by one‐dimensional (DPFGSE‐NOE) and two‐dimensional (NOESY) NOE experiments. Diffusion measurements (DOSY) confirm that 1 is monomeric in D2O solution. DFT Calculations yield 13C‐NMR chemical shifts which are in good agreement for species 6 which is the imino N‐protonated form of 1 . An exceptionally high proton affinity of 265.7 kcal/mol is calculated for 1 , indicating that 1 may behave as a very powerful ‘proton sponge’ of comparable strength as synthetic systems studied so far. Predictions of 13C‐NMR chemical shifts by the ‘NMRPredict’ software are in agreement with the DFT data. The absolute configuration at the ring stereogenic center of 1 is concluded to be (S) from NOE data as well as from similarities with the absolute configuration (S) found in mycosporine‐glycine 16 . This supports the assumption that 1 is biochemically derived from 3,3‐O‐didehydroquinic acid ( 17 ). The data obtained question the results recently published by a different research group claiming that the configuration at the imino moiety of 1 is (Z), rather than (E) as established by the here presented study.  相似文献   

16.
The synthesis of 3,3′‐diacetoxy‐4,4′‐bis(hexyloxy)biphenyl following the nickel‐modified Ullmann reaction yielded a by‐product which was identified successfully by crystallographic analysis as 1‐(4‐hexyloxy‐3‐hydroxyphenyl)ethanone, C14H20O3. This unexpected nonbiphenyl by‐product exhibited IR, 1H NMR, 13C NMR and COSY (correlation spectroscopy) spectra fully consistent with the proposed structure. The compound crystallized in the orthorombic Pbca space group, with two independent formula units in the asymmetric unit (one of which was slightly disordered), and showed a supramolecular architecture in which molecules linked by hydroxy–ethanone O—H...O interactions are organized in columns separated by the aliphatic tails.  相似文献   

17.
在温和条件下, 以3,3 -二溴-4,4 -联苯二酚和1,2-二溴乙烷或1,4-二溴丁烷为原料, 经过两步反应方便地合成了三聚联苯醚类大环化合物4a4b, 并通过1H NMR, 13C NMR, HRMS对中间体和目标化合物的结构进行了表征.  相似文献   

18.
Thirteen curcuminoids (1–13) were isolated from the rhizomes of Curcuma longa. Among them, 1,5‐dihydroxy‐1,7‐bis(4‐hydroxyphenyl)‐4,6‐heptadiene‐3‐one (1), 1,5‐dihydroxy‐1‐(4‐hydroxy‐3‐methoxyphenyl)‐7‐(4‐hydroxyphenyl)‐4,6‐heptadiene‐3‐one (2), 1,5‐dihydroxy‐1‐(4‐hydroxyphenyl)‐7‐(4‐hydroxy‐3‐methoxyphenyl)‐4,6‐heptadiene‐3‐one (3), and 3‐hydroxy‐1,7‐bis‐(4‐hydroxyphenyl)‐6‐heptene‐1,5‐dione (4) are new compounds, and 1‐(4‐hydroxyphenyl)‐7‐(3, 4‐dihydroxyphenyl)‐1, 6‐heptadiene‐3, 5‐dione (5) is isolated from natural sources for the first time. The structures of these compounds were elucidated by extensive spectroscopic analyses, especially 1D and 2D NMR spectroscopy. The 13C NMR data and complete 1H and 13C NMR assignments of some known compounds are reported for the first time. In addition, the errors of 1H and 13C assignments reported in the literature were corrected. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
This paper describes the development of novel aromatic platforms for supramolecular construction. By the Suzuki cross‐coupling protocol, a variety of functionalized m‐terphenyl derivatives were prepared (Schemes 1–4). Macrolactamization of bis(ammonium salt) (S,S)‐ 6 with bis(acyl halide) 7 afforded the macrocyclic receptor (S,S)‐ 2 (Scheme 1), which was shown by 1H‐NMR titration studies to form ‘nesting' complexes of moderate stability (Ka between 130 and 290 M ?1, 300 K) with octyl glucosides 13 – 15 (Fig. 2) in the noncompetitive solvent CDCl3. Suzuki cross‐coupling starting from 3,3′,5,5′‐tetrabromo‐1,1′‐biphenyl provided access to a novel series of extended aromatic platforms (Scheme 5) for cleft‐type (Fig. 1) and macrotricyclic receptors such as (S,S,S,S)‐ 1 . Although mass‐spectral evidence for the formation of (S,S,S,S)‐ 1 by macrolactamization between the two functionalized 3,3′,5,5′‐tetraaryl‐1,1′‐biphenyl derivatives (S,S)‐ 33 and 36 was obtained, the 1H‐ and 13C‐NMR spectra of purified material remained rather inconclusive with respect to both purity and constitution. The versatile access to the novel, differentially functionalized 3,3′,5,5′‐tetrabromo‐1,1′‐biphenyl platforms should ensure their wide use in future supramolecular construction.  相似文献   

20.
Bromotyrosine‐derived compounds are commonly isolated from Verongida sponges and are a major class of marine natural products. Here we report on the unequivocal 13C NMR assignment of the brominated carbons at positions C‐2 and C‐4 of the cyclohexadiene ring, two carbons whose resonances are often incorrectly assigned. Interpretation of HMBC data acquired for a series of known bromotyrosine analogues, which included ianthesine E (1), aerothionin (2), 11‐hydroxyaerothionin (3), and 11,19‐dideoxyfistularin‐3 (4), allowed us to unequivocally assign the carbons in question, C‐2 and C‐4, through the observance of unique HMBC correlations from the C‐1 hydroxyl proton. Here we present the complete 2D NMR data sets recorded in DMSO‐d6 for 2–4 that were used to confirm the assignment and establish the working model. Using this model, a survey of the literature revealed that many members of this structure class had been wrongly assigned. This paper serves to reassign those compounds whose 13C NMR assignment at positions C‐2 and C‐4 of the cyclohexadiene ring should be reversed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号