首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the gas phase, cis,trans-1,5-cyclooctadiene (\documentclass{article}\pagestyle{empty}\begin{document}$ {\mathop 1\limits_\sim} $\end{document}) undergoes a unimolecular rearrangement to cis,cis-1,5-cyclooctadiene (\documentclass{article}\pagestyle{empty}\begin{document}$ {\mathop 2\limits_\sim} $\end{document}) and bimolecular formation of dimers \documentclass{article}\pagestyle{empty}\begin{document}$ {\mathop 3\limits_\sim}-{\mathop 5\limits_\sim} $\end{document} $\end{document}. The Arrhenius parameters are EA = 135.7 ± 4.4 kJ mole?1 and log(A/sec?1) = 12.9 ± 0.6 for the first reaction and EA = 66.1 ± 6.0 kJ mole?1 and log[A/(liter mole?1 sec?1)] = 5.5 ± 0.8 for the second reaction. Using thermochemical kinetics, the first reaction is shown to proceed via a rate determining Cope rearrangement of \documentclass{article}\pagestyle{empty}\begin{document}$ {\mathop 1\limits_\sim} $\end{document} to cis? 1,2-divinylcyclobutane (\documentclass{article}\pagestyle{empty}\begin{document}$ {\mathop 6\limits_\sim} $\end{document}), EA = 136.2 - 4.4 kJ mole?1 and log(A/sec?1) = 13.0 ± 0.6. The corresponding back reaction, \documentclass{article}\pagestyle{empty}\begin{document}$ {\mathop 6\limits_\sim}{\rightarrow}{\mathop 1\limits_\sim} $\end{document}, which was investigated separately, shows EA = 110.2 ± 1.2 kJ mole?1 and log(A/sec?1) = 10.9 ± 0.2. The heat of formation of \documentclass{article}\pagestyle{empty}\begin{document}$ {\mathop 6\limits_\sim} $\end{document} is determined to 188 ± 5.5 kJ mole?1. The mechanism of formation of dimers \documentclass{article}\pagestyle{empty}\begin{document}$ {\mathop 3\limits_\sim}-{\mathop 5\limits_\sim} $\end{document} is discussed. To allow the formal analysis of the kinetic problem, a simple algorithm to obtain the rate constants of competing first- and second-order reactions was developed.  相似文献   

2.
By using isobutane (t-BuH) as a radical trapit has been possible to study the initial step in the decomposition of dimethyl peroxide (DMP) over the temperature range of 110–140°C in a static system. For low concentrations of DMP (2.5 × 10?5?10?4M) and high pressures of t?BuH (~0.9 atm) the first-order homogeneous rate of formation of methanol (MeOH) is a direct measure of reaction (1): \documentclass{article}\pagestyle{empty}\begin{document}${\rm DMP}\mathop \to \limits^1 2{\rm Me}\mathop {\rm O}\limits^{\rm .},{\rm Me}\mathop {\rm O}\limits^{\rm .} + t{\rm - BuH}\mathop \to \limits^4 {\rm MeOH} + t{\rm -}\mathop {\rm B}\limits^{\rm .} {\rm u}$\end{document}. For complete decomposition of DMP in t-BuH, virtually all of the DMP is converted to MeOH. Thus DMP is a clean thermal source of Me\documentclass{article}\pagestyle{empty}\begin{document}$\mathop {\rm O}\limits^{\rm .}$\end{document}. In the decomposition of pure DMP complications arise due to the H-abstraction reactions of Me\documentclass{article}\pagestyle{empty}\begin{document}$\mathop {\rm O}\limits^{\rm .}$\end{document} from DMP and the product CH2O. The rate constant for reaction (1) is given by k1 = 1015.5?37.0/θ sec?1, very similar to other dialkyl peroxides. The thermochemistry leads to the result D(MeO? OMe) = 37.6 ± 0.2 kcal/mole and /H(Me\documentclass{article}\pagestyle{empty}\begin{document}$\mathop {\rm O}\limits^{\rm .}$\end{document}) = 3.8 ± 0.2 kcal/mole. It is concluded that D(RO? OR) and D(RO? H) are unaffected by the nature of R. From ΔS and A1, k2 is calculated to be 1010.3±0.5 M?1· sec?1: \documentclass{article}\pagestyle{empty}\begin{document}$2{\rm Me}\mathop {\rm O}\limits^{\rm .} \mathop \to \limits^2 {\rm DMP}$\end{document}. For complete reaction, trace amounts of t-BuOMe lead to the result k2 ~ 109 M?1 ·sec?1: \documentclass{article}\pagestyle{empty}\begin{document}$2t{\rm - Bu}\mathop \to \limits^5$\end{document} products. From the relationship k6 = 2(k2k5a)1/2 and with k5a = 108.4 M?1 · sec?1, we arrive at the result k6 = 109.7 M?1 · sec?1: \documentclass{article}\pagestyle{empty}\begin{document}$2t{\rm - u}\mathop {\rm B}\limits^{\rm .} \to (t{\rm - Bu)}_{\rm 2}{\rm,}t{\rm -}\mathop {\rm B}\limits^{\rm .} {\rm u} + {\rm Me}\mathop {\rm O}\limits^{\rm .} \mathop \to \limits^6 t{\rm - BuOMe}$\end{document}.  相似文献   

3.
The flash photolysis–vacuum ultraviolet kinetic absorption spectroscopy technique has been used to measure the absolute rate constant for the reaction of ground state S(3P) atoms withnitric oxide,\documentclass{article}\pagestyle{empty}\begin{document}${\rm S}\left({^{\rm 3} P} \right) + {\rm NO}\mathop {\longrightarrow}\limits^{\rm M} {\rm SNO}\left({{\rm M} = {\rm CO}_2} \right)$\end{document} as a function of nitric oxide concentration and total pressure. The rateconstant was determined to be 1.9±0.1 × 1011 12/mol2.sec at 298°K, with a high-pressure limit of 9.3 ± 2.1×109 l/mol·sec?1. The observed kinetics are consistent with a termolecular energy transfer mechanism.  相似文献   

4.
Absolute rate constants at room temperature for the metathesis reaction have been measured under VLPP conditions: k1 = (2.0 ± 0.5) × 108M?1·s?1, k2 = (3.0 ± 0.7) × 108M?1·s?1. The radicals were generated through collisionless infrared-multiphoton decomposition of the corresponding iodides by irradiation from a high-power CO2-TEA laser. The reaction of ?2F5 and ?3F7 with \documentclass{article}\pagestyle{empty}\begin{document}$$\mathop {\rm N}\limits^{\rm .} {\rm O}_{\rm 2} $$\end{document} are briefly discussed in relation to the reaction of ?3 with \documentclass{article}\pagestyle{empty}\begin{document}$$\mathop {\rm N}\limits^{\rm .} {\rm O}_{\rm 2} $$\end{document}, which had been measured previously.  相似文献   

5.
The rate constants for the protonation of “free” (that is, solvated) superoxide ions by water and ethanol are equal to 0.5–3.5 ×10?3M?1·s?1 in DMF and AN at 20º. It has been found that the protonation rates for the ion pairs of \documentclass{article}\pagestyle{empty}\begin{document}${\rm O}_{\rm 2}^{\overline {\rm .} }$\end{document} with the Bu4N+ cation are much slower than those for “free” \documentclass{article}\pagestyle{empty}\begin{document}${\rm O}_{\rm 2}^{\overline {\rm .} }$\end{document}. It is suggested that the effects of aprotic solvents on the protonation rates of \documentclass{article}\pagestyle{empty}\begin{document}${\rm O}_{\rm 2}^{\overline {\rm .} }$\end{document} are mainly due to the fact that the proton donors form solvated complexes of different stability in these solvents.  相似文献   

6.
Polycondensations were carried out between azobiscyanopentanoly chloride (ACPC) and polyethyleneglycols (PEG) having average molecular weight of 600, 2000, 8400, and 21,500, resulting in the chain extended PEG of several times the original polymer chain length and containing scissile ? N?N? units of azobiscyanopentanoic acid (ACPA). The poly(polyethyleneglycol-azobiscyanopentanoate), designated as \documentclass{article}\pagestyle{empty}\begin{document}$\rlap{--} (PEG\rlap{--} )_n^*$\end{document} were thermally decomposed in the presence of styrene (St) to obtain PEG–PSt block copolymers. The amount of St consumed was proportional to [? N?N? ]0.5 and [St]1.2, whereas the chain length of the PSt segment was proportional to [? N? N? ]?0.5 and [St]0.8.  相似文献   

7.
Methods are described for the unequivocal identification of the acetyl, [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document} ?O] (a), 1-hydroxyvinyl, [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OH] (b), and oxiranyl, (d), cations. They involve the careful examination of metastable peak intensities and shapes and collision induced processes at very low, high and intermediate collision gas pressures. It will be shown that each [C2H3O]+ ion produces a unique metastable peak for the fragmentation [C2H3O]+ → [CH3]++CO, each appropriately relating to different [C2H3O]+ structures. [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?O] ions do not interconvert with any of the other [C2H3O]+ ions prior to loss of CO, but deuterium and 13C labelling experiments established that [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OH] (b) rearranges via a 1,2-H shift into energy-rich leading to the loss of positional identity of the carbon atoms in ions (b). Fragmentation of b to [CH3]++CO has a high activation energy, c. 400 kJ mol?1. On the other hand, , generated at its threshold from a suitable precursor molecule, does not rearrange into [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OH], but undergoes a slow isomerization into [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?O] via [CH2\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}HO]. Interpretation of results rests in part upon recent ab initio calculations. The methods described in this paper permit the identification of reactions that have hitherto lain unsuspected: for example, many of the ionized molecules of type CH3COR examined in this work produce [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OH] ions in addition to [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?O] showing that some enolization takes place prior to fragmentation. Furthermore, ionized ethanol generates a, b and d ions. We have also applied the methods for identification of daughter ions in systems of current interest. The loss of OH˙ from [CH3COOD] generates only [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OD]. Elimination of CH3˙ from the enol of acetone radical cation most probably generates only [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?O] ions, confirming the earlier proposal for non-ergodic behaviour of this system. We stress, however, that until all stable isomeric species (such as [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm O}\limits^{\rm + } $\end{document}?C:]) have been experimentally identified, the hypothesis of incompletely randomized energy should be used with reserve.  相似文献   

8.
罗阳  陈沛  赵凤起  胡荣祖  李上文  高茵 《中国化学》2004,22(11):1219-1224
Introduction 3,3-Bis(azidomethyl)oxetane/tetrahydrofuran (BAM- O/THF, marked as B/T) copolymer can be used as an azide binder of high energy propellants with the lower signature, and lower sensitivity to improve the me-chanical properties at lower temperature and the burning rate characteristics. Its decomposition kinetics and the effects of THF on the decomposition kinetics of BAMO copolymers have been reported.1,2 In the present work, we report the kinetic model function and kinetic pa…  相似文献   

9.
The rate of decomposition of isopropyl nitrite (IPN) has been studied in a static system over the temperature range of 130–160°C. For low concentrations of IPN (1–5 × 10?5M), but with a high total pressure of CF4 (~0.9 atm) and small extents of reaction (~1%), the first-order rates of acetaldehyde (AcH) formation are a direct measure of reaction (1), since k3 » k2(NO): \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$ {\rm IPN}\begin{array}{rcl} 1 \\ {\rightleftarrows} \\ 2 \\ \end{array}i - \Pr \mathop {\rm O}\limits^. + {\rm NO},i - \Pr \mathop {\rm O}\limits^. \stackrel{3}{\longrightarrow} {\rm AcH} + {\rm Me}. $\end{document} Addition of large amounts of NO (~0.9 atm) in place of CF4 almost completely suppressed AcH formation. Addition of large amounts of isobutane – t-BuH – (~0.9 atm) in place of CF4 at 160°C resulted in decreasing the AcH by 25%. Thus 25% of \documentclass{article}\pagestyle{empty}\begin{document}$ i - \Pr \mathop {\rm O}\limits^{\rm .} $\end{document} were trapped by the t-BuH (4): \documentclass{article}\pagestyle{empty}\begin{document}$ i - \Pr \mathop {\rm O}\limits^. + t - {\rm BuH} \stackrel{4}{\longrightarrow} i - \Pr {\rm OH} + (t - {\rm Bu}). $\end{document} The result of adding either NO or t-BuH shows that reaction (1) is the only route for the production of AcH. The rate constant for reaction (1) is given by k1 = 1016.2±0.4–41.0±0.8/θ sec?1. Since (E1 + RT) and ΔH°1 are identical, within experimental error, both may be equated with D(i-PrO-NO) = 41.6 ± 0.8 kcal/mol and E2 = 0 ± 0.8 kcal/mol. The thermochemistry leads to the result that \documentclass{article}\pagestyle{empty}\begin{document}$ \Delta H_f^\circ (i - {\rm Pr}\mathop {\rm O}\limits^{\rm .} ) = - 11.9 \pm 0.8{\rm kcal}/{\rm mol}. $\end{document} From ΔS°1 and A1, k2 is calculated to be 1010.5±0.4M?1·sec?1. From an independent observation that k6/k2 = 0.19 ± 0.03 independent of temperature we find E6 = 0 ± 1 kcal/mol and k6 = 109.8+0.4M?;1·sec?1: \documentclass{article}\pagestyle{empty}\begin{document}$ i - \Pr \mathop {\rm O}\limits^. + {\rm NO} \stackrel{6}{\longrightarrow} {\rm M}_2 {\rm K} + {\rm HNO}. $\end{document} In addition to AcH, acetone (M2K) and isopropyl alcohol (IPA) are produced in approximately equal amounts. The rate of M2K formation is markedly affected by the ratio S/V of different reaction vessels. It is concluded that the M2K arises as the result of a heterogeneous elimination of HNO from IPN. In a spherical reaction vessel the first-order rate of M2K formation is given by k5 = 109.4–27.0/θ sec?1: \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm IPN} \stackrel{5}{\longrightarrow} {\rm M}_2 {\rm K} + {\rm HNO}. $\end{document} IPA is thought to arise via the hydrolysis of IPN, the water being formed from HNO. This elimination process explains previous erroneous results for IPN.  相似文献   

10.
One kinetic model for the oxidation of iodide ion by peroxydisulfate ion in aqueous solution is proposed. The reaction is regarded as \documentclass{article}\pagestyle{empty}\begin{document} {\rm S}_2 {\rm O}_8^{2 -} + {\rm I}^ - {\rm IS}_2 {\rm O}_8^{3 -} \end{document}, followed by the reaction \documentclass{article}\pagestyle{empty}\begin{document} {\rm IS}_2 {\rm O}_8^{3 -} + {\rm I}l_2 + 2{\rm SO}_4^{2 -} \end{document}. If the initial rates V are obtained from the formation of the iodine molecules, the reaction rate constant k1 and the ratio k2/k-1 can be estimated by plotting the values of [S2O82?][I?]/V against that of 1/[I?]. The extrapolated value for k1 is 2.20×10?2 L/mol-sec and k2/k-1 is calculated to be 4.25×102 mol/L at 27°C in a solution with an ionic strength of 0.420.  相似文献   

11.
Excitation of p-Chloranil ( CA ) in propylcyanide (PrCN) at room temperature leads to rapid production of 3 CA * which decays predominantly to CA H· with k = 1.6 · 105 s?1. Observation of a photoinduced current suggests simultaneous production of CA ? formed by electron transfer quenching of 3 CA * by the medium. Added naphthalene ( NP ) quenches 3 CA * with kq = 7.0 · 109M ?1S ?1; NP + is unambigously identified as product (besides CA ?) of the electron transfer process. Dissociation of the ion pair occurs with essentially unit probability. Higher concentrations of NP lead to the formation of ( NP )+2. Pertinent spectroscopic parameters established for NP + under the conditions used are λmax = 685 nm (? = 2970) using the known parameters of CA \documentclass{article}\pagestyle{empty}\begin{document}$ 1^{+ \atop \dot{}} $\end{document} as reference. NP + and CA \documentclass{article}\pagestyle{empty}\begin{document}$ 1^{+ \atop \dot{}} $\end{document} decay by charge annihilation with kr = 4.5 · 109 M ?1S ?1. The deviation from the diffusion controlled rate constant expected for ionic species, is discussed in view of the spin characteristics of the process. Comparison with two other ion recombination reactions leads to the conclusion that ‘inverted behaviour’ as expected from Marcus' theory does also not show up for backward e?-transfer between two ions (produced by forward e?-transfer between two neutrals). Residual absorptions in the system are ascribed to CA H·, tentatively proposed to originate from H+-abstraction by CA \documentclass{article}\pagestyle{empty}\begin{document}$ 1^{+ \atop \dot{}} $\end{document} from the solvent. NP + appears to be a rather stable species with respect to the medium if the latter is meticulously purified.  相似文献   

12.
The rate of decomposition of s-butyl nitrite (SBN) has been studied in the absence (130–160°C) and presence (160–200°C) of NO. Under the former conditions, for low concentrations of SBN (6 × 10?5 ? 10?4M) and small extents of reaction (~1.5%), the first-order homogeneous rates of acetaldehyde (AcH) formation are a direct measure of reaction (1) since k3c » k2(NO): . Unlike t-butyl nitrite (TBN), d(AcH)/dt is independent of added CF4 (~0.9 atm). Thus k3c is always » k2 (NO) over this pressure range. Large amounts of NO (~0.9 atm) (130–160°C) completely suppress AcH formation. k1 = 1016.2–40.9/θ sec?1. Since (E1 + RT) and ΔH°1 are identical, within experimental error, both may be equated with D(s-BuO-NO) = 41.5 ± 0.8 kcal/mol and E2 = 0 ± 0.8 kcal/mol. The thermochemistry leads to the result ΔH°f (s-\documentclass{article}\pagestyle{empty}\begin{document}${\rm Bu}\mathop {\rm O}\limits^{\rm .}$\end{document}) = ? 16.6 ± 0.8 kcal/mol. From ΔS°1 and A1, k2 is calculated to be 1010.4 M?1 · sec?1, identical to that for TBN. From an independent observation that k6/k2 = 0.26 ± 0.01 independent of temperature, \documentclass{article}\pagestyle{empty}\begin{document}${\rm s - Bu}\mathop {\rm O}\limits^{\rm .} + {\rm NO}\mathop \to \limits^{\rm 6} {\rm MEK} + {\rm HNO}$\end{document}, we find E6 = 0 ± 1 kcal/mol and k6 = 109.8M?1 · sec?1. Under the conditions first cited, methyl ethyl ketone (MEK) is also a product of the reaction, the rate of which becomes measurable at extents of conversion >2%. However, this rate is ~0.1 that of AcH formation. Although MEK formation is affected by the ratio S/V for different reaction vessels, in a spherical reaction vessel, this MEK arises as the result of an essentially homogeneous first-order 4-centre elimination of HNO. \documentclass{article}\pagestyle{empty}\begin{document}${\rm SBN}\mathop \to \limits^{\rm 5} {\rm MEK} + {\rm HNO}$\end{document}; k5 = 1012.8–35.8/θ sec?1. Sec-butyl alcohol (SBA), formed at a rate comparable to MEK, is thought to arise via the hydrolysis of SBN, the water being formed from HNO. The rate of disappearance of SBN, that is, d(MEK + SBA + AcH)/dt, is given by kglobal = 1015.7–39.6/θ sec?1. In NO (~1 atm) the rate of formation of MEK was about twice that in the absence of NO, whereas the SBA was greatly reduced. This reaction was also affected by the ratio S/V of different reaction vessels. It was again concluded that in a spherical reaction vessel, the rate of MEK formation was essentially homogeneous and first order. This rate is given by kobs = 1012.9–35.4/θ sec?1, very similar to k5. However, although it is clear that the rate of formation of MEK is doubled in the presence of NO, the value for kobs makes it difficult to associate this extra MEK with the disproportionation of s-\documentclass{article}\pagestyle{empty}\begin{document}${\rm Bu}\mathop {\rm O}\limits^{\rm .}$\end{document} and NO: s-\documentclass{article}\pagestyle{empty}\begin{document}$s{\rm - Bu}\mathop {\rm O}\limits^{\rm .} + {\rm NO}\mathop \to \limits^{\rm 6} {\rm MEK} + {\rm HNO}$\end{document}. NO at temperatures of 130–160°C completely suppresses AcH formation. AcH reappears at higher temperatures (165–200°C), enabling k3c to be determined. Ignoring reaction (6), d(AcH)/dt = k1k3 (SBN )/[k3c + k2(NO)]; k3c = 1014.8–15.3/θ sec?1. Inclusion of reaction (6) into the mechanism makes very little difference to the result. Reaction (3c) is expected to be a pressure-dependent process.  相似文献   

13.
Three [C3H3O]+ ion structures have been characterized. The most stable of these is \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 2} = {\rm CH} - \mathop {\rm C}\limits^ + = {\rm O} $\end{document} its heat of formation ΔHf was measured as 749±5 kJ mol?1. In the μs time frame this ion fragments exclusively by loss of CO, a process which also dominates its collisional activation mass spectrum. The other stable [C3H3O]+ structures, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}\equiv \mathop {\rm C}\limits^ + - {\rm CHOH} $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 2} = {\rm C} = \mathop {\rm C}\limits^{\rm + } - {\rm OH}, $\end{document}, were generated from some acetylenic and allenic precursor ions; their heats of formation were estimated to be 830 and 880 kJ mol?1 respectively. The former ion was also produced by the gas phase protonation of propynal. These ions show loss of C2H2 and CO in both their metastable ion and collisional activation mass spectra. The broad Gaussian-type metastable peak for the loss of CO was shown to consist of two components corresponding to gragmentations having different activation energies.  相似文献   

14.
A computerized method is given for the evaluation of Arrhenius parameters which describe the chemiluminescent decomposition of tetramethyl-1,2-dioxetane. The parameters were determined in several solvents by linear regression methods and the equation ln ln \documentclass{article}\pagestyle{empty}\begin{document}$ [(\sum\nolimits_0^\infty I - \sum\nolimits_0^t I)/(\sum\nolimits_0^\infty I - \sum\nolimits_0^t I - \sum\nolimits_0^{t + \Delta t} I)] = \ln\, (A_1 \Delta t) - E_1 /RT$\end{document}, where I refers to photons counted by increments of Δt, and E1 and A are the first-order Arrhenius parameters. The average of E1 and log A1 (s?1) from this method from six runs in CCl4 with initial concentrations of 4.9 × 10?5-8.45 × 10?4M were 27.21 ± 0.88 kcal/mol (113.7 ± 3.7 kJ/mol) and 13.88 ± 0.50, respectively. Simulated curves of chemiluminescence versus time were obtained with the use of a computer program and an auxiliary plotter.  相似文献   

15.
Ab initio molecular orbital calculations with split-valence plus polarization basis sets and incorporating electron correlation and zero-point energy corrections have been used to examine possible equilibrium structures on the [C2H7N]+˙ surface. In addition to the radical cations of ethylamine and dimethylamine, three other isomers were found which have comparable energy, but which have no stable neutral counterparts. These are \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm .} {\rm H}_{\rm 2} {\rm CH}_{\rm 2} \mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 3} $\end{document}, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm C}\limits^{\rm .} {\rm H}\mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 3} $\end{document}and\documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 2} \mathop {\rm C}\limits^. {\rm H}_{\rm 2} {\rm }, $\end{document} with calculated energies relative to the ethylamine radical cation of ?33, ?28 and 4 kJ mol?1, respectively. Substantial barriers for rearrangement among the various isomers and significant binding energies with respect to possible fragmentation products are found. The predictions for \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^. {\rm H}_{\rm 2} {\rm CH}_{\rm 2} \mathop {\rm N}\limits^ + {\rm H}_{\rm 3} $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm C}\limits^{\rm .} {\rm H}\mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 3}$\end{document} are consistent with their recent observation in the gas phase. The remaining isomer, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 2} \mathop {\rm C}\limits^{\rm .} {\rm H}_{\rm 2} {\rm },$\end{document}is also predicted to be experimentally observable.  相似文献   

16.
Four samples containing 40, 60, 80, and 97 wt-% of poly(vinyl chloride), the rest being plasticizer and stabilizer, were tested by using the Weissenberg Rheogoniometer in the steady-shearing mode at temperatures between 155 and 235°C and rates of shear \documentclass{article}\pagestyle{empty}\begin{document}$ \dot \gamma = 0.01 - 400 $\end{document} sec?1. The viscosity η versus \documentclass{article}\pagestyle{empty}\begin{document}$ \dot \gamma $\end{document} follows Graessley's theoretical dependence for infinitely entangled system. The primary normal-stress difference coefficient ψ versus \documentclass{article}\pagestyle{empty}\begin{document}$ \dot \gamma $\end{document} is well described by the same theoretical function, used with the square of its argument. The temperature dependence of η0 and ψ0 shows discontinuities at T = Tb. The numerical values of Tb can be calculated from the theory of the melting point depression due to diluent. The activation energy of viscous flow Eη below Tb is 5–9 times as large as above this temperature. The activation energy of normal stress is found to be Eψ ≈ 5Eη. The characteristic relaxation times τo, ψp, calculated from superposition of η versus \documentclass{article}\pagestyle{empty}\begin{document}$ \dot \gamma $\end{document} and ψ versus \documentclass{article}\pagestyle{empty}\begin{document}$ \dot \gamma $\end{document} data, respectively, onto Graessley's master curves, and τN, computed from zero shear parameters η0 and ψ0, differ in their sensitivity to the melting of microcrystalline regions. It is postulated that in the systems investigated, aggregates with long lifetimes are being formed, increasing the effective molecular weight and introducing changes in the effective polydispersity.  相似文献   

17.
Five new monomers of transition metal complexes containing a styryl group, trans-\documentclass{article}\pagestyle{empty}\begin{document}$ {\rm Pd}({\rm PBu}_{\rm 3})_2 \rlap{--} ({\rm C}_6 {\rm H}_4 {\rm CH} \hbox{=\hskip-2pt=} {\rm CH}_2 ){\rm X\ X \hbox{=\hskip-2pt=} Cl(Ia),\ X \hbox{=\hskip-2pt=} Br(Ib)},\ {\rm X \hbox{=\hskip-2pt=} CN(Ic),\ X \hbox{=\hskip-2pt=} Ph(Id)} $\end{document} and trans-\documentclass{article}\pagestyle{empty}\begin{document}${\rm Pt(PBu}_{\rm 3} {\rm )}_{\rm 2} \rlap{--} ({\rm C}_{\rm 6} {\rm H}_{\rm 4} {\rm CH} \hbox{=\hskip-2pt=} {\rm CH}_2 ){\rm Cl}({\rm II})$\end{document}, were synthesized. The monomers were readily homopolymerized in benzene with the use of AIBN or BBu3–oxygen as the initiator. Copolymerization of Ia with styrene was carried out by using AIBN. From the Cl content of the copolymers by analysis, monomer reactivity ratios and Qe values were obtained as follows: r1 = 1.49, r2 = 0.45; Q2 = 0.41, e2 = ?1.4 (M1 = styrene, M2 = Ia). Based on the above data, the σ-bonded palladium moiety at para position of styrene acts as a strongly electron-donating group to the phenyl ring. This is also supported by the olefinic β-carbon chemical shift of 13C NMR for Ia.  相似文献   

18.
A variant of the transcorrelated method of Boys and Handy employing finite differences is presented. It is based upon the following two properties of the transcorrelated Hamiltonian operator C?1HC: (1) C?1HC possesses an energy eigenvalue spectrum which is identical to that associated with H itself; and (2) if \documentclass{article}\pagestyle{empty}\begin{document}$$ C \equiv \begin{array}{*{20}c} \pi & {e^{r_{ij} /2} } \\ {i > j} & {} \\ \end{array} $$\end{document} then C?1HC is free of the singularities of H at the points where the interelectron separation rij is zero. A bivariational principle for approximating the eigenvalues and the left and right eigenfunctions of C?1HC is introduced and the resulting set of coupled integro-differential equations are solved in finite-difference form by means of a coupled self-consistent field, Newton Raphson algorithm. As a preliminary test of the method, a calculation of the ground-state energy of the helium atom is presented.  相似文献   

19.
Results are presented for the gas phase thermalized electron attachment reactions of transition metal dithiocarbamates Metal·[S2CN·Et2]n, with n = 3 for the trivalent metals Cr, Mn, Fe, Co and n = 2 for the divalent metals Fe, Co, Ni, Pd and Cu. Details of negative ion mass spectra are given, and these were obtained by use of the complementary methods of in-beam direct insertion and desorption chemical ionization of samples into temperature and pressure controlled ion source methane gas plasmas. For the tris-complexes, only small abundances of [M]? were observed, being consistent with the electron entering a metal-based orbital to give a reduced [MetalII·L3]*? species—the precursor of the observed [MetalII·L2]? or [L]? product ions. For the bis-complexes, a much higher proportion of the total ion current was carried by [M]?, with [L]? being the next most abundant species in all cases and the principal product in the reaction sequence \documentclass{article}\pagestyle{empty}\begin{document}${[{\rm Metal}^{{\rm II}} \cdot {\rm L}_{\rm 2}] + {\rm e} \to [{\rm Metal}^{\rm I} \cdot {\rm L}_{\rm 2}]^{*-} \mathop {\rightarrow}\limits^* [{\rm L]}^{\rm - } + [{\rm Metal}^{\rm I} \cdot {\rm L}].}$\end{document}. Rearrangement ions [L·MetalI·X]? with X=SH, SCN, NEt2 were also identified for this series which can be accounted for by rearrangement reactions occurring in ligands not fulfilling a bidentate function towards the relevant metal.  相似文献   

20.
Rate constants k1, k2, and k3 have been measured at 298 K by means of a laser photolysis-laser magnetic resonance technique and (or) by a laser photolysis-infrared chemiluminescence detection technique (LMR and IRCL, respectively). \hfill\hbox to 12em{$\rm Cl+I_2\longrightarrow ICl+I;$}\hbox to 8em{$\rm {\it k}_1=(2.5\pm 0.7)\times 10^{-10}(IRCL)$}\hfill(1)\\\hfill\hbox to 12em{}\hbox to 8em{$\rm {\it k}_1=(2.8\pm 0.8)\times 10^{-10}(LMR)$}\hfill \\\hfill\hbox to 12em{$\rm SiCl_3+I_2\longrightarrow SiCl_3I+I;$}\hbox to 8em{$\rm {\it k}_2=(5.8\pm 1.8)\times 10^{-10}(IRCL)$}\hfill (2)\\\hfill\hbox to 12em{$\rm SiH_3+I_2\longrightarrow SiIH_3+I;$}\hbox to 8em{$\rm {\it k}_3=(1.8\pm 0.46)\times 10^{-10}(LMR)$}\hfill (3)\\ As an average of the LMR and IRCL results we offer the value k1 = (2.7 ± 0.6) × 10−10. Units are cm3 molecule−1 s−1; uncertainties are 2σ including precision and estimated systematic errors. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 25–33, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号