首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Studies were carried out on the grafting of butyl acrylate (BA) to amylose by the ceric ion method. After removing the homo-PBA with THF and toluene, and the ungrafted amylose with 0.5NNaOH, the PBA content of the graft copolymers was determined by acid hydrolysis with 1N HCl. The influence of reaction time on the grafting yields was determined and the largest values were: 82% for the grafting efficiency, 246% for the percent grafting, 62% for the grafted amylose, 48% for the grafted PBA, and 64% for the total conversion.  相似文献   

2.
Grafted PMMA was isolated by the acid hydrolysis method. Weight-average and number-average molecular weights were determined by gel permeation chromatography. The number-average molecular weight of the grafted chains was about 475,000 for amylopectin and 403,000 for amylose. The number of grafted chains (mmol) ranged from 2.4 × 10?3 to 4.6 × 10?3 for amylopectin graft copolymers and from 2.9 × 10?3 to 6.8 × 10?3 for those of amylose. These results were related to others obtained from ceric ion consumption studies. The values suggest that amylopectin, because of its complex structure, favors a higher consumption of ceric ion in homopolymerization reactions and inhibits the initiation reactions of the copolymerization.  相似文献   

3.
4.
Grafting of acrylonitrile onto starch showed slightly higher yields when using soluble rather than insoluble starch, for reaction times < 1.5 hr. Beyond this time, the rate of grafting onto the soluble starch levels off, while that for grafting onto the insoluble starch proceeds leading to prograssive increase in the grafting yield. Momomer reactivity was in the following order: acrylonitrile > ethyl acrylate? methyl methacrylate. For the first two monomers, the order of reactivity is the reverse of that found for grafting onto cellulose; extremely low grafting yields resulted from grafting of ethyl acrylate rather than acrylonitrile onto starch. This result was attributed to the jelly nature of the polyethyl acrylate grafted starch, preventing diffusion of the monomer into the starch granules. This view was supported by the higher consumption of ceric ions at the start of the reaction, on grafting ethyl acrylate instead of acrylonitrile. As the reaction proceeds, the reverse takes place. Increase of ceric salt concentration, as well as the liquor to starch ratio, led to increased grafting yields.  相似文献   

5.
The use of hexavalent chromium to initiate graft copolymerization of methyl methacrylate onto wool fibers has been investigated. The rate of grafting was determined by varying monomer, chromium(VI), temperature, acidity of the medium, nature of wool, reaction medium, and redox system. The graft yield increases with increasing monomer concentration up to 0.65M, and, with further increase of monomer the graft yield decreases. The graft yield increases with increasing chromium(VI) concentration. The grafting is considerably influenced by chemical modification of wool prior to grafting. The effect of certain inorganic salt and anionic surfactant on the rate of grafting has been investigated. The graft yield is influenced by thiourea concentration; it decreases with increasing thiourea concentration.  相似文献   

6.
Graft copolymerization of methyl methacrylate onto curdlan was first investigated. In the graft copolymerization initiated by ammonium persulfate (APS) in DMSO under a homogeneous condition, the resulting graft copolymers had low molecular weights and low grafting percentages. However, the initiation by APS in water gave graft copolymers having relatively higher molecular weight ( ) and higher grafting percentage (548%) than those copolymers obtained by the homogeneous condition. When the graft copolymerization was carried out by cerium (IV) ammonium nitrate-HNO3 initiation, the graft copolymer had the highest grafting percentage of 1620% without degradation of the curdlan backbone. The resulting graft copolymers were soluble in DMSO. The graft copolymers obtained by the cerium salt had narrow molecular weight distributions () compared with those by the APS catalyst in DMSO or water. The graft copolymers decomposed with sulfuric acid to isolate PMMAs, which molecular weights were larger than that of the corresponding homo-PMMAs. The structure of the grafted copolymers was characterized by IR, 13C NMR, DSC, and SEM. It was found that the graft copolymers exhibited the glass transition temperature (Tg), though curdlan had no Tg. As the grafting percentage increased, the Tg increased to reach 270°C, which was higher than the decomposition temperature of curdlan. The surface image of the grafted copolymers observed by SEM, showed smoothless compared with that of curdlan. It was also revealed that the graft copolymers having the grafting percentage of 1620% swelled in common organic solvents up to 4.5 times of the weight of the dry graft copolymer to form gels. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
The graft copolymerization of methyl methacrylate (MMA) onto silk in aqueous media initiated by the potassium peroxydiphosphate-thiourea redox system was studied at 50°C. The rate of grafting was determined by changing [monomerl], [thiourea], [initiator], acidity of the medium, reaction medium, and temperature. A significant increase percent of grafting was noticed with increasing monomer concentration to 84.49 × 10?2 mole/liter and the further increase is associated with the decrease of graft yield. The graft yield increases with an increase of thiourea (Tu) concentration to 25 × 10?5 mole/liter; then it decreases. A measurable increase in graft yield was observed with an increase in acidity of the medium. Graft yield increases to a certain temperature, i.e., 50°C, and then it decreases. The graft yield increases with an increase of initiator concentration to 60 × 10?4 mole/liter; then it decreases. The graft yield is medium dependent. A suitable kinetic path has been proposed and the rate equation has been derived.  相似文献   

8.
Radiation-induced graft polymerization of acrylic acid onto powdered polyethylene samples of various granulometric compositions was studied. The resulting graft polymer can be used as a cation-exchange sorbent. The ion adsorption properties of the synthesized cation exchanger were characterized.  相似文献   

9.
Sodium bisulfite–soda lime glass has proved to be a good initiator for polymerization and graft polymerization onto cellulose of some vinyl monomers. A scheme dealing with the mechanism of initiation has been proposed assuming trapping of the bisulfite radical inside the glass frame-work to form a so-called sulfur-impregnated solid. Such a solid has paramagnetic properties and acts on the vinyl monomers and cellulose as any free-radical-producing source thus leading to polymerization and graft polymerization onto cellulose. Other radicals containing sulfur, such as sulfite, sulfate, and persulfate failed to give such property with soda lime glass. With the sodium bisulfite–soda lime glass system the reactivity decreases in the order methyl methacrylate > ethyl acrylate > acrylonitrile which is inconsistent with the arrangement of acceptor monomers with decreasing electron-donating ability. This may reflect interference of the addition reaction which may take place between the monomer and bisulfite and the rate of which may depend on the activation energy of the monomer.  相似文献   

10.
Graft polymerization of vinyl monomers onto nanosized alumina particles   总被引:1,自引:0,他引:1  
To enhance the interfacial interaction in alumina nanoparticles filled polymer composites, an effective surface modification method was developed by grafting polystyrene and polyacrylamide onto the particles. That is, the alumina surface was firstly treated with silane, followed by radical grafting polymerization in aqueous or non-aqueous systems. Results of infrared spectroscopy and dispersiveness in solvents demonstrated that the desired polymer chains have been covalently bonded to the surface of the alumina particles. They also greatly changed their surface characteristics. In addition, effects of polymerization conditions, including ways of monomer feeding, concentrations of monomer and initiator, and reaction time, on the grafting reaction were presented. It was found that the growing polymer radicals and/or the grafted polymer chains had a blocking effect on the diffusion of radicals or monomers towards the surface of nanoalumina. This was due to the fact that the interaction between the solvent and the grafted polymers was weaker than that between the grafted polymers and the nanoparticles.  相似文献   

11.
Methyl methacrylate has been grafted onto wool and silk using the redox system peroxydiphosphate/tartaric acid. The alkali solubility falls with increased grafting.  相似文献   

12.
13.
The thermal bulk polymerization of methyl methacrylate (MMA) in a wide range of temperatures has been studied using a dilatometric reactor. It is shown that, irrespective of the care taken to purify the MMA, the evolution of the time-conversion curve can be explained only if we account for the presence of an impurity associated with the monomer acting as a free radical initiator. The activation energy for the decomposition of this impurity has been estimated as 98 kJ/mol. Having accounted for this impurity, the activation energy for the real thermal polymerization of the MMA has been estimated to be 75 kJ/mol. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
15.
The surface grafting onto ultrafine silica by the radical polymerization of methyl methacrylate (MMA) initiated by peroxide groups introduced onto the surface was investigated. The introduction of peroxide groups onto the silica surface was achieved by the reaction of hydrogen peroxide with chlorosilyl groups, which were introduced by the treatment of silica with thionyl chloride. The content of diisopropylbenzene peroxide and tert-butyl peroxide groups introduced onto the silica according to the above method was determined to be 0.11 and 0.08 mmol/g, respectively. It was found that the polymerization of MMA is initiated by silica having these peroxide groups. In the polymerization, polyMMA was grafted onto silica surface: the percentage of grafting reached about 70%. Therefore, it was concluded that the polymerization of MMA is initiated by surface radicals formed by the decomposition of peroxide groups on silica and polyMMA is grafted through the propagation from the surface. During the polymerization, ungrafted polyMMA was also formed because of the formation of initiator fragments by the decomposition of peroxide groups: the grafting efficiency of the graft polymerization was 30–40%. PolyMMA-grafted silica produced a stable colloidal dispersion in organic solvents for polyMMA. © 1992 John Wiley & Sons, Inc.  相似文献   

16.
17.
18.
The graft copolymerization of methyl methacrylate onto natural rubber (NR) is investigated using potassium peroxydiphosphate as the initiator. The rate of grafting is determined by varying monomer concentration, peroxydiphosphate concentration, and temperature. The graft yield increased with an increase in monomer concentration up to 1.4082M/L and thereafter the graft yield decreases. The graft yield increases significantly with an increase of peroxydiphosphate concentration up to 150 X 10-1M/L and thereafter the graft yield decreases. The grafting reaction is temperature dependent. A suitable kinetic scheme is proposed and the rate equation is evaluated.  相似文献   

19.
Graft copolymerization of 2-hydroxyethyl methacrylate(HEMA) and mixtures of HEMA with methyl methacrylate (MMA) onto hide powder was attempted using ceric ammonium nitrate as initiator, with a view to optimize the conditions for graft copolymerization. Percent grafting and grafting efficiency were calculated for various variables such as monomer concentration, initator concentration and mole ratio of HEMA to MMA. Rp, Rg and Rh (rates of polymerization, grafting and homopolymerization respectively) were also evaluated. It was observed that Rp increased linearly with increasing concentration of MMA except at very low concentrations of the monomer. An explanation is given for the effect of variables on extent of grafting and grafting efficiency.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号