首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The insertion of (CF3)2CO into the PH bond of MenH3?nP yields MenH2?nPC(CF3)2OH and MenH1?nP[C(CF3)2OH]2 (n=O, 1), respectively [1]. MeP[C(CF3)2OH]2 rearranges giving the diphosphine [MePOCH(CF3)2]2 and the phosphorane MeP[OCH(CF3)2]4. Me2PH reacts with (CF3)2CO forming several products, e.g. MePF[OCH(CF3)2]2 and Me2PPMe2 [1]. The phosphines tBu(R)PH(R=Me, tBu), however, add (CF3)2CO giving rise to the phosphinites tBu(R)POCH(CF3)2, which furnish stable phosphonium salts upon treating with MeI. (CF3)2CO inserts into the SH bond of RSH to yield RSC(CF3)2OH (R=H,Me,Ph), which were reacted with MeI, too. Reacting SCl2 with LiOCH(CF3)2 gives S[OCH(CF3)2]2 which is oxidised by chlorine to the sulfurane ClS[OCH(CF3)2]3 [2]. The sulfurane is able to transfer (CF3)2CHO groups to phosphorus (III) compounds, e.g. P[OCH(CF3)2]3 and Me3P yielding P[OCH(CF3)2]5 and [Me3POCH(CF3)2]+Cl?. ClS[OCH(CF3)2]3 gives a stable salt upon reaction with SbCl5, like ClP[OCH(CF3)2]4. The mechanisms for these reactions are discussed.  相似文献   

2.
Reaction of hexafluoropropene (HFP) with a series of alcohols under thermal, photochemical or peroxide-initiated conditions affords the 1:1 adducts CF3CHFCF2CR1R2OH (R1 = H, R2 = H, Me, Prn or CF3; R1 = Me, R2 = Me or Et) in high yield via a radical chain mechanism. Adduct are not formed with the alcohols (CF3)2CHOH and CF3CHFCF2CH2OH. Other 1:1 adducts of structure CHF2CF(CF3)CH2OH and CH3(C2H3CF2CHFCF3)CH2OH are formed as minor products in the methanol and n-butanol reactions, respectively.  相似文献   

3.
Abstract

The reactions of dihaloaminophosphines RNHPF2, (R=H, Me, tBu) and R2NPCl2 (R?Me, Et, SiMe3; R2?CH2(CH2CMe2)2 with LiOCH(CF3)2 yield the corresponding aminophosphites R2NP[OCH(CF3)2)2. Hexafluoroacetone reacts with RNH[OCH(CF3)2]2 as well as MeNHPF2 and tBuNHPF2 in good yields to the 1,3,5λ5-oxazaphosphetanes 1-4, which show rapid pseudorotation at room temperature.  相似文献   

4.
Abstract

The System CF3I/Me3P is re-investigated and Me2PCF3, Me4P+γ, (CF3)2PMe3, Me3PI2, [Me3(CF3)P]+γ are found as products. Using CF3Br/P(NEt2)3 the phosphines R1 2PCF3 and R1P(CF3)2 (e.g. R1 = Me, iPr, NEt2) can be obtained which are precursors either for phosphoranes (e.g. 1,2λ5σ5-oxaphosphetanes) or phosphonium salts (e.g. [R1 2(Me)PCF3]+X? or [R1(Me)P(CF3)2X?]. The latter are deprotonated to furnish methylene phosphoranes R1 2(CH2=)PCF3 or R1(CH2=)P(CF3)2, reactive synthons. From CF3Br/P(NEt2)3/P(OPh)3 the phosphine P(CF3)3 is available, which turned out to be a potent electrophile. Amido phospites ROP(NEt2)2 and halides R2X (R2=CCl2CF3, X=Cl; R2=CF=CFCF3, X=F; R2=C6F5, X=Br, I; R2=C(CF3)3, X=Br; R2=SCF3, X=CF3) undergo an ARBUZOV reaction.  相似文献   

5.
Abstract

The reactions of a variety of electrophiles with the N-silyl-P-trifluoroethoxyphosphoranimine anion Me3Sin°P(Me)(OCH2CF3)CH? 2 (1a), prepared by the deprotonation of the dimethyl precursor Me3SiN[dbnd]P(OCH2CF3)Me2 (1) with n-BuLi in Et2O at-78°C, were studied. Thus, treatment of 1a with alkyl halides, ethyl chloroformate, or bromine afforded the new N-silylphosphoranimine derivatives Me3SiN[dbnd]P(Me)(OCH2CF3)CH2R [2: R = Me, 3: R = CH2Ph, 4: R = CH[sbnd]CH2, 5: R = C(O)OEt, and 6: R = Br]. In another series, when 1a was allowed to react with various carbonyl compounds, 1,2-addition of the anion to the carbonyl group was observed. Quenching with Me3SiCl gave the O-silylated products Me3SiN[dbnd]P(Me)(OCH2CF3)CH2°C(OSiMe3)R1R2 [7: R 1 = R 2 = Me; 8: R 1 = Me, R 2 = Ph; 9: R1 = Me, R 2 = CH[sbnd]CH2; and 10: R 1 = H, R 2 = Ph]. Compounds 2–10 were obtained as distillable, thermally stable liquids and were characterized by NMR spectroscopy (1H, 13C, and 31P) and elemental analysis.  相似文献   

6.
Transition Metal Substituted Acylphosphanes and Phosphaalkenes. 17. Synthesis and Structure of the μ-Isophosphaalkyne Complexes [(η5-C5H5)2(CO)2Fe2(μ-CO)(μ-C?PC6H2R3)] (R = Me, iPr, tBu) . Condensation of (η5-C5H5)2(CO)2Fe2(μ-CO)(μ-CSMe)}+SO3CF3? ( 6 ) with 2,4,6-R3C6H2PH(SiMe3) ( 7 ) ( a : R = Me, b : R = iPr, c : R = tBu) affords the complexes (η5-C5H5)2(CO)2Fe2(μ-CO)(η-C?PC6H2R3-2,4,6) ( 9 a–c ) with edge-bridging isophosphaalkyne ligands as confirmed by the x-ray structure analysis of 9 a .  相似文献   

7.
Reactions of ClS[OCH(CF3)2]3 and S[OCH(CF3)2]2 with Phosphorus(III) Derivatives The sulfurane ClS[OCH(CF3)2]3 reacts with Me3P to give the phosphonium salt [Me3POCH(CF3)2]+Cl?, in the case of (MeO)3P products of an Arbuzov reaction are found: (MeO)2P-(:O)OCH(CF3)2 and MeCl; the sulfurane is reduced to the sulfoxylate S[OCH(CF3)2]2. The cyclic phosphite FP[OC(CF3)2C(CF3)2O] and P[OCH(CF3)2]3 furnish derivatives of pentacoordinated phosphorus upon reaction with ClS[OCH(CF3)2]3. The sulfoxylate S[OCH(CF3)2]2 oxidises Me3P, (MeO)3P and P[OCH(CF3)2]3 to form R3P? O and R3P? S (R = Me, OMe, OCH(CF3)2). The ether (CF3)2CHOCH(CF3)2 is isolated, too.  相似文献   

8.
Enantiomerically pure triflones R1CH(R2)SO2CF3 have been synthesized starting from the corresponding chiral alcohols via thiols and trifluoromethylsulfanes. Key steps of the syntheses of the sulfanes are the photochemical trifluoromethylation of the thiols with CF3Hal (Hal=halide) or substitution of alkoxyphosphinediamines with CF3SSCF3. The deprotonation of RCH(Me)SO2CF3 (R=CH2Ph, iHex) with nBuLi with the formation of salts [RC(Me)? SO2CF3]Li and their electrophilic capture both occurred with high enantioselectivities. Displacement of the SO2CF3 group of (S)‐MeOCH2C(Me)(CH2Ph)SO2CF3 (95 % ee) by an ethyl group through the reaction with AlEt3 gave alkane MeOCH2C(Me)(CH2Ph)Et of 96 % ee. Racemization of salts [R1C(R2)SO2CF3]Li follows first‐order kinetics and is mainly an enthalpic process with small negative activation entropy as revealed by polarimetry and dynamic NMR (DNMR) spectroscopy. This is in accordance with a Cα? S bond rotation as the rate‐determining step. Lithium α‐(S)‐trifluoromethyl‐ and α‐(S)‐nonafluorobutylsulfonyl carbanion salts have a much higher racemization barrier than the corresponding α‐(S)‐tert‐butylsulfonyl carbanion salts. Whereas [PhCH2C(Me)SO2tBu]Li/DMPU (DMPU = dimethylpropylurea) has a half‐life of racemization at ?105 °C of 2.4 h, that of [PhCH2C(Me)SO2CF3]Li at ?78 °C is 30 d. DNMR spectroscopy of amides (PhCH2)2NSO2CF3 and (PhCH2)N(Ph)SO2CF3 gave N? S rotational barriers that seem to be distinctly higher than those of nonfluorinated sulfonamides. NMR spectroscopy of [PhCH2C(Ph)SO2R]M (M=Li, K, NBu4; R=CF3, tBu) shows for both salts a confinement of the negative charge mainly to the Cα atom and a significant benzylic stabilization that is weaker in the trifluoromethylsulfonyl carbanion. According to crystal structure analyses, the carbanions of salts {[PhCH2C(Ph)SO2CF3]Li? L }2 ( L =2 THF, tetramethylethylenediamine (TMEDA)) and [PhCH2C(Ph)SO2CF3]NBu4 have the typical chiral Cα? S conformation of α‐sulfonyl carbanions, planar Cα atoms, and short Cα? S bonds. Ab initio calculations of [MeC(Ph)SO2tBu]? and [MeC(Ph)SO2CF3]? showed for the fluorinated carbanion stronger nC→σ* and nO→σ* interactions and a weaker benzylic stabilization. According to natural bond orbital (NBO) calculations of [R1C(R2)SO2R]? (R=tBu, CF3) the nC→σ*S? R interaction is much stronger for R=CF3. Ab initio calculations gave for [MeC(Ph)SO2tBu]Li ? 2 Me2O an O,Li,Cα contact ion pair (CIP) and for [MeC(Ph)SO2CF3]Li ? 2 Me2O an O,Li,O CIP. According to cryoscopy, [PhCH2C(Ph)SO2CF3]Li, [iHexC(Me)SO2CF3]Li, and [PhCH2C(Ph)SO2CF3]NBu4 predominantly form monomers in tetrahydrofuran (THF) at ?108 °C. The NMR spectroscopic data of salts [R1(R2)SO2R3]Li (R3=tBu, CF3) indicate that the dominating monomeric CIPs are devoid of Cα? Li bonds.  相似文献   

9.
1,1,1,4,5,5,5-Heptafluoro-4-(trifluoromethyl)-2,3-pentanedione reacted with λ3σ3-phosphorus compounds, PR1R2R3 (R1 = CF3, R2 = R3 = Me, iPr, NEt2; R1 = NCO, R2 = R3 = OMe, OEt, R2−R3 = OCH2CH2O, OCMe2CMe2O; R1 = OSiMe3, R2 = R3 = OEt; R1 = NEt2, R2 = R3 = OCH2CF3; R1 = R2 = Et2N, R3 = OCH2CF3, OCH(CF3)2, OCH2Ph, OC6F5) to give new 1,3,2λ5σ5-dioxaphospholenes. The first λ5σ5 phosphoranes with an OCN group bonded to phosphorus were obtained. © 1998 John Wiley & Sons, Inc. Heteroatom Chem 9:109–113, 1998  相似文献   

10.
The reaction of a series of β-methoxyvinyl trifluoromethyl ketones [CF3COC(R2)?C(OMe)R1, where R1 = Me, -(CH2)3-C3, -CH2)4-C3, Ph and R2 = H, Me, -(CH2)3-C4, -(CH2)4-C4] with N-methylhydroxylamine is reported. The regiochemistry of the reaction are explained by MO calculation data.  相似文献   

11.
Aminophosphites and Aminophosphoranes Containing the 2,2,2-Trifluoro-1-(trifluoromethyl)ethyl Grouping By the reaction of dichloroaminophosphines R2NPCl2 (R = Me, Et, SiMe3; R2 = CH2(CH2CMe2)2) and LiOCH(CF3)2 the phosphites 1 – 4 and LiCl were formed. Hexafluoroacetone reacted with 1 or 2 to give the monocyclic phosphoranes 5 and 7 . Compound 5 could also be obtained from the dichloroaminophosphosphorane 6 and LiOCH(CF3)2. The aminophosphite 2 , elementary chlorine and Li2[OC(CF3)2C(CF3)2O] or LiOCH(CF3)2 gave 7 or the acyclic phosphorane 8 , respectively. Compounds 1 – 4 exhibit two magnetically inequivalent CF3 groups in the 19F-N.M.R. spectra, the phosphoranes 5 , 7 and 8 show no ligand permutation at room temperature.  相似文献   

12.
Trifluoromethylated phosphines R2PCF3 (R = NEt2, Me, 1Pr) were methylated by CH4OSO2CF3, yielding the corresponding phosphonium salts [R2P(CF3)CH3] [F3CSO3]. Treatment with LiN(SiMe3)2 at −80°C furnished the phosphorus ylides R2P(CF3) = CH2 that could be trapped by use of hexafluoroacetone with formation of stable 1,2λ5σ5-oxaphosphetanes. The single-crystal X-ray structure determination of one of these oxaphosphetanes showed a distorted trigonal bipyramid at phosphorus with the P-CF3 group in an axial position. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Terminal alkynes (HCCR) (R=COOMe, CH2OH) insert into the metal-carbyne bond of the diiron complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(NCMe)(Cp)2][SO3CF3] (R=Xyl, 1a; CH2Ph, 1b; Me, 1c; Xyl=2,6-Me2C6H3), affording the corresponding μ-vinyliminium complexes [Fe2{μ-σ:η3-C(R)CHCN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R=Xyl, R=COOMe, 2; R=CH2Ph, R=COOMe, 3; R=Me, R=COOMe, 4; R=Xyl, R=CH2OH, 5; R=Me, R=CH2OH, 6). The insertion is regiospecific and C-C bond formation selectively occurs between the carbyne carbon and the CH moiety of the alkyne. Disubstituted alkynes (RCCR) also insert into the metal-carbyne bond leading to the formation of [Fe2{μ-σ:η3-C(R)C(R)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R=Me, R=Xyl, 8; R=Et, R=Xyl, 9; R=COOMe, R=Xyl, 10; R=COOMe, R=CH2Ph, 11; R=COOMe, R=Me, 12). Complexes 2, 3, 5, 8, 9 and 11, in which the iminium nitrogen is unsymmetrically substituted, give rise to E and/or Z isomers. When iminium substituents are Me and Xyl, the NMR and structural investigations (X-ray structure analysis of 2 and 8) indicate that complexes obtained from terminal alkynes preferentially adopt the E configuration, whereas those derived from internal alkynes are exclusively Z. In complexes 8 and 9, trans and cis isomers have been observed, by NMR spectroscopy, and the structures of trans-8 and cis-8 have been determined by X-ray diffraction studies. Trans to cis isomerization occurs upon heating in THF at reflux temperature. In contrast to the case of HCCR, the insertion of 2-hexyne is not regiospecific: both [Fe2{μ-σ:η3-C(CH2CH2CH3)C(Me)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R=Xyl, 13; R=Me, 15) and [Fe2{μ-σ:η3-C(Me)C(CH2CH2CH3)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R=Xyl, 14, R=Me, 16) are obtained and these compounds are present in solution as a mixture of cis and trans isomers, with predominance of the former.  相似文献   

14.
29Si29Si-one bond coupling constants for a series of symmetric disilanes XH2SiSiH2X, X = Ph, I, Tf (Tf = OSO2CF3) and X2HSiSiHX2, X = Ph, I, Br, Me, tBu and Tf have been measured using a modified INADEQUATE pulse sequence. Correlations between SiSi coupling constants, force constants and SiH coupling constants are discussed.  相似文献   

15.
Perfluoroalkenyl phosphonates were formed along with Me3SiF using CF3CF=CF2, CF3CH=CF2, F5SCF=CF2 or F5SCH=CF2 and silylated phosphites, (R1O)2POSiMe3 (R1=Et, SiMe3). This straightforward method could be extended to perfluorobutadienes CF2=C(RF)C(RF)=CF2 (RF F=F, CF3). The formation of CF3C(=O)P(=O)(OSiMe3)2 and further reactions to yield bisphosphonates will be described. Acetylphosphonates, R2C(=O)P(=O)(OSiMe3)2 (R2=CH3, CF3) reacted with the ketimine, CH3C(=NiPr)Ph to give α-hydroxy-γ-imino phosphonates. Trifluoroacetylphenol and 2,6-bis(trifluoracetyl)-4-methyl-phenol have been proven to be versatile precursors for α-and γ-hydroxy phosphonates. Intermediates in these reactions were found to be cyclic λ5σ5P species.  相似文献   

16.
A series of heteroligated (salicylaldiminato)(β‐enaminoketonato)titanium complexes [3‐But‐2‐OC6H3CH = N(C6F5)] [PhN = C(R1)CHC(R2)O]TiCl2 [ 3a : R1 = CF3, R2 = tBu; 3b : R1 = Me, R2 = CF3; 3c : R1 = CF3, R2 = Ph; 3d : R1 = CF3, R2 = C6H4Ph(p ); 3e : R1 = CF3, R2 = C6H4Ph(o ); 3f : R = CF3, R2 = C6H4Cl(p ); 3g : R1 = CF3; R2 = C6H3Cl2(2,5); 3h : R1 = CF3, R2 = C6H4Me(p )] were investigated as catalysts for ethylene (co)polymerization. In the presence of modified methylaluminoxane as a cocatalyst, these complexes showed activities about 50%–1000% and 10%–100% higher than their corresponding bis(β‐enaminoketonato) titanium complexes for ethylene homo‐ and ethylene/1‐hexene copolymerization, respectively. They produced high or moderate molecular weight copolymers with 1‐hexene incorporations about 10%–200% higher than their homoligated counterpart pentafluorinated FI‐Ti complex. Among them, complex 3b displayed the highest activity [2.06 × 106 g/molTi?h], affording copolymers with the highest 1‐hexene incorporations of 34.8 mol% under mild conditions. Moreover, catalyst 3h with electron‐donating group not only exhibited much higher 1‐hexene incorporations (9.0 mol% vs. 3.2 mol%) than pentafluorinated FI‐Ti complex but also generated copolymers with similar narrow molecular weight distributions (M w/M n = 1.20–1.26). When the 1‐hexene concentration in the feed was about 2.0 mol/L and the hexene incorporation of resultant polymer was about 9.0 mol%, a quasi‐living copolymerization behavior could be achieved. 1H and 13C NMR spectroscopic analysis of their resulting copolymers demonstrated the possible copolymerization mechanism, which was related with the chain initiation, monomer insertion style, chain transfer and termination during the polymerization process. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2787–2797  相似文献   

17.
Preparations are described of several monometallic complexes (bipym)PtR2 [bipym = 2,2′-bipyrimidyl; R = Me, CF3, Ph, 1-adamantylmethyl (adme); R2 = (CH2)4] and bimetallic analogues R2Pt(μ-bipym)PtR′2 [R = R′ = CH3, C6H5, adme; R = CH3, R′ = Ph, adme, CF3]. IR, 1H NMR and UV/visible spectroscopic characteristics of the two modes of bipyrimidyl coordination are discussed.  相似文献   

18.
Methods for syntheses of new polyfluorinated compounds, viz., silanes containing substituents CF3CF2CF2C(CF3)2(CH2)3 (RF) at the silicon atom and 1,3,5-tris(RF)-1,3,5-trimethylcyclotrisiloxane that can be used for the synthesis of fluorocontaining oligo- and polysiloxanes of different structure, were developed. The polymerization of cyclotrisiloxane in the presence of 1,3-divinyltetramethyldisiloxane gave linear oligomers, whose chain contain -(RF)Si(Me)O- units.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2133–2136, October, 2004.  相似文献   

19.
Different methods for the preparation of fluorinated iminium salts RR1CNR2R3+MF6? (R=R1=F ; R2=R3=CH3, C2H5 M=As, Sb 4a ? c R=H, R1=F; R2=R3=CH3 M=As, Sb 5a, b R=R1=CF3; R2=H, R3=CH3 M=Sb 12 R=R1=CF3; R2=R3=CH3 M=As 14) are reported, the spectroscopic properties (IR, NMR) of the cations of these salts are briefly discussed. By F?-addition to these salts, e.g. to 16, perfluoroalkyl-bis(alkyl)-amines (e.g. (CF3)2CFN(CH3)2 15) can be prepared; from the methylation of CF3NCF2 bis(trifluoromethyl) methylamine (CF3)2NCH3 (11) was obtained.  相似文献   

20.
《Tetrahedron letters》1986,27(42):5143-5146
Reaction of the cyclopropenes (3, R1 = Me, R2 = Me), (3, R1 = H, R2 = Pri) and (3, R1 = H, R2 = But) and with one equivalent of m-chloroperbenzoic acid leads to the enones (4) and (7, R = Pri and But respectively, in the last two cases accompanied by about 15% of the regioisomer (8, R = Pri or But. In the case of (3, R1 = Me, R2 = H) oxidation with excess reagent led to the formate (9, R = SiMe3) and two intermediates (11) and (10, R = SiMe3) could be identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号