首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Block and random copolymers of butadiene and styrene as well as polybutadiene and polystyrene homopolymers have been investigated with respect to formation of trapped electrons, contribution of ionic species to crosslinking, and hydrogen gas evolution due to γ radiation. The decay kinetics of the disubstituted benzyl radical has also been studied. The yields of electron trapping G(e?) are measured. The G(e?) increase linearly with increased polystyrene content in block polymers, while in random copolymer a deviation from a linear relation is observed. The contribution of ionic reactions to crosslinking is about 25–35% of the total crosslinking yield. Hydrogen production in block copolymers is approximately a linear function of the weight-fraction additivity of the yield of hydrogen formation in polystyrene and polybutadiene homopolymers. Energy transfer from butadiene units to styrene units in random copolymers resulted in a deviation from such an additivity relation. The decay of the disubstituted benzyl free radical in block copolymers is a second-order reaction. In random copolymer, the decay is best interpreted in terms of equation based on a second-order decay mechanism of a fraction of the free radicals decaying in the presence of other nondecaying free radicals.  相似文献   

2.
Quenched and annealed samples of linear low-density polyethylene (LLDPE) were γ irradiated in vacuo at 77 K; the kinetics of the alkyl free-radical decay reactions were studied at room temperature, and of the allyl free-radical reactions at 60, 70, and 80°C. The ESR signals saturate at a slightly higher microwave power in the LLDPE than in high-density polyethylene (HDPE), and the alkyl radicals start decaying at a lower temperature in the LLDPE than in the HDPE. As in the HDPE the decay of the alkyl free radicals at room temperature in the LLDPE follows the kinetic equation for two simultaneous first-order reactions with the fraction of the faster-decaying component being slightly greater in the quenched than in the annealed samples. In the case of the allyl free radicals the decay at 60°C follows the equation based on one fraction of the radicals decaying according to second-order kinetics in the presence of other nondecaying radicals. At higher temperatures the data are best understood in terms of a second-order rate equation with a continuously variable time-dependent rate constant as suggested by Hamill and Funabashi.  相似文献   

3.
The decay kinetics of the chain allyl free radical has been studied in the following morphological forms of polyethylene (PE): Marlex bulk film, hydrogenated PE, and extended-chain PE. Coupled with previous work on single-crystalline PE it can be seen that the decay rate is greater the more amorphous the sample. In the Marlex bulk film and hydrogenated PE the decay can be interpreted in terms of a simultaneous fast and slow decay process by means of our Q-function equation, but with rising temperature the decay approximates a single rate process. With extended-chain PE the allyl decay rate does not become appreciable until the melting range is approached. The fraction of allyl radicals decaying by the slow process is 2 to 10 times greater than the fraction of fast decaying radicals. The ratio of the fast decay rate constant to that of the slow rate constant is greater for the bulk Marlex film than for the hydrogenated PE. All ratios decrease with rising temperature. For times up to about 150 min the allyl decay in the extended-chain PE accurately follows a single second-order decay law with a time-independent diffusion controlled reaction rate constant.  相似文献   

4.
This article reports a new methodology for preparing highly stereoregular styrene (ST)/1,3‐butadiene (BD) block copolymers, composed of syndiotactic polystyrene (syn‐PS) segments chemically bonded with cis‐polybutadiene (cis‐PB) segments, through a stereospecific sequential block copolymerization of ST with BD in the presence of a C5Me5TiMe3/B(C6F5)3/Al(oct)3 catalyst. The first polymerization step, conducted in toluene at ?25 °C, was attributed to the syndiospecific living polymerization of ST. The second step, conducted at ?40 °C, was attributed to the cis‐specific living polymerization of BD. The livingness of the whole polymerization system was confirmed through a linear increase in the weight‐average molecular weights of the copolymers versus the polymer yields in both steps, whereas the molar mass distributions remained constant. The profound cross reactivity of the styrenic‐end‐group active species with BD toward ST led to the production of syn‐PS‐bcis‐PB copolymers with extremely high block efficiencies. Because of the presence of crystallizable syn‐PS segments, this copolymer exhibited high melting temperatures (up to 270 °C), which were remarkably different from those of the corresponding anionic ST–BD copolymers, for which no melting temperatures were observed. Scanning electron microscopy pictures of a binary syn‐PS/cis‐PB blend with or without the addition of the syn‐PS‐bcis‐PB copolymers proved that it could be used as an effective compatibilizer for noncompatibilized syn‐PS/cis‐PB binary blends. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1188–1195, 2005  相似文献   

5.
Stress relaxation has been studied in networks of styrene-butadiene-styrene triblock copolymers with spherical styrene domain structure containing 0.10 weight fraction of unattached linear polybutadiene (Mw = 389,000) or styrene-butadiene diblocks with very long butadiene segments (M = 225,000 or 510,000). The stretch ratio (uniaxial extension) was usually 1.15 and the temperature ranged from ?20 to +20°C. The contribution of the linear polybutadiene species to relaxation was essentially the same in two triblock networks with very different butadiene block lengths, as expected if the configurational rearrangements are dominated by reptation. In the diblock-triblock mixtures, in which the diblock butadiene segments are free at one end but anchored at the other and therefore incapable of reptation, there was no contribution to relaxation from the dangling butadiene segments of the diblock component; this would be expected if there are no relaxation mechanisms alternative to reptation for these very long semiattached species within the experimental time scale.  相似文献   

6.
In the free-radical polymerization of styrene, it has been observed that the onset of an acceleration of the polymerization due to increased solution viscosity can be quantitatively measured as occurring at a critical point. The product of the degree of polymerization of the polymer in solution at the critical point times its volume fraction can be represented by a temperature-dependent constant (P?n, Vc, = K ). The value of the constant passes through a maximum between 60 and 90°C. The value of the constant is somewhat lower than that for the phenomenon called chain entanglement. It is postulated that the temperature-dependent behavior of K is due to a previously reported solution phase transition which is believed to be caused by interaction between phenylgroups on the polystyrene chain. Observations on the ultraviolet absorbance of styrene copolymers and calculations on the absolute rate of copolymerization of styrene with methyl methacrylate are presented to support the postulated intrachain interactions.  相似文献   

7.
A novel linked‐half‐sandwich lutetium–bis(allyl) complex [(C5Me4? C5H4N)Lu(η3‐C3H5)2] ( 1 ) attached by a pyridyl‐functionalized cyclopentadienyl ligand was synthesized and fully characterized. Complex 1 in combination with [Ph3C][B(C6F5)4] exhibited unprecedented dual catalysis with outstanding activities in highly syndiotactic (rrrr>99 %) styrene polymerization and distinguished cis‐1,4‐selective (99 %) butadiene polymerization, respectively. Strikingly, this catalyst system exhibited remarkable activity (396 kg copolymer (molLu h)?1) for the copolymerization of butadiene and styrene. Irrespective of whether the monomers were fed in concurrent mode or sequential addition of butadiene followed by styrene, diblock copolymers were obtained exclusively, which was confirmed by a kinetics investigation of monomer conversion of copolymerization with time. In the copolymers, the styrene incorporation rate varied from 4.7 to 85.4 mol %, whereas the polybutadiene (PBD) block was highly cis‐1,4‐regulated (95 %) and the polystyrene segment remained purely syndiotactic (rrrr>99 %). Correspondingly, the copolymers exhibited glass transition temperatures (Tg) around ?107 °C and melting points (Tm) around 268 °C; typical values for diblock microstructures. Such copolymers cannot be accessed by any other methods known to date. X‐ray powder diffraction analysis of these diblock copolymers showed that the crystallizable syndiotactic polystyrene (syn‐PS) block was in the toluene δ clathrate form. The AFM micrographs of diblock copolymer showed a remarkable phase‐separation morphology of the cis‐1,4‐PBD block and syn‐PS block. This represents the first example of a lutetium‐based catalyst showing both high activity and selectivity for the (co)polymerization of styrene and butadiene.  相似文献   

8.
Allyl free-radical intermediates are detected by ultraviolet absorption at 255 mu in poly(vinyl chloride) irradiated at ?196°C and stored at 25°C. In vacuum at 25°C, allyl radicals are converted into polyenyl free radicals and polyenes. From the nature of allyl radical decay in vacuum, radical chain transfer between polyenyl radicals and poly(vinyl chloride) is inferred. Allyl and polyenyl free radicals are scavenged by oxygen on post-irradiation storage in air.  相似文献   

9.
ESR spectra of purified and ferric ion-sensitized celluloses irradiated with ultraviolet light in vacuo at 45, 20, ?80, and ?196°C were recoreded and compared. Generally, several kinds of spectra, viz., singlet, three-line, five-line, and seven-line spectra, were observed. At higher temperatures, only singlet and three-line spectra of stable free-radical species were detected, whereas at lower temperatures such as at ?196°C, two doubled spectra of formyl radicals and hydrogen atoms were also detected in addition to cellulose radicals. It is believed that the intricate spectra observed at low temperatures are superimposed upon spectra generated by free radicals which may or may not be stable at high temperatures. During reirradiation at ?196°C with an alternative light sources, i.e., λ > 2537 Å and λ > 3400 Å, of samples which were irradiated at 20°C or at ?196°C, phenomena indicative of radical transformation and formation of new radicals or of decay of radicals in terms of ultraviolet bleaching were observed on studying the changes of line-shapes and relative signal intensities of the spectra.  相似文献   

10.
This article reports a practical method for preparing cis‐polybutadiene‐blocksyn‐polystyrene (cis‐PB‐bsyn‐PS) copolymers with long crystallizable syndiotactic polystyrene (syn‐PS) segments chemically bonded with high cis‐1,4‐polybutadiene segments through the addition of styrene (ST) to a cis‐specific 1,3‐butadiene (BD) living catalyst composed of cyclopentadienyl titanium trichloride (CpTiCl3) and modified methylaluminoxane (MMAO). The incorporation of ST into the living polybutadiene (PB) precursor remarkably depended on the polymerization temperature. A low temperature (?20 °C) suppressed the rate of ST incorporation, but a high temperature (50 °C) tended to decompose the livingness of the active species and enhance the rate of the aspecific ST polymerization initiated by MMAO. Consequently, temperatures of 0–25 °C seemed to be best for this copolymerization system. Because of the absence of ST livingness, the final products contained not only the block copolymer but also the homopolymers. Attempts to isolate the block copolymer were carried out with common solvent fractionation techniques, but the results were not sufficient. Cross‐fractionation chromatography was, therefore, used for the isolation of the cis‐PB‐bsyn‐PS copolymer. The presence of long syn‐PS segments was confirmed by the observation of a strong endothermic peak at 260 °C in the differential scanning calorimetry curve. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2698–2704, 2004  相似文献   

11.
Kinetic equations for the decay of the free radicals in polymeric solids are given for the following assumptions on which they are based: (1) two simultaneous first-order but physically separated decay reactions; (2) two simultaneous noninteracting second-order decay reactions; (3) combined simultaneous but intermingled first- and second-order decay reactions; (4) the same but for independent, i.e., not intermingled, first- and second-order decay reactions; (5) a second-order decay reaction in the presence of some free radicals that do not decay; and (6) a first-order decay reaction in the presence of some free radicals that do not decay. In all of the above physical systems the total concentration only can be measured. Hence the above kinetic equations refer to the change of the total concentration with time. It is found that the data for the decay of the free radicals in irradiated isotactic polypropylene and 61% styrene-39% butadiene block copolymer agree best with the equations for the second-order decay in the presence of a fraction of nondecaying free radicals.  相似文献   

12.
Polystyrene–nylon 6 and polybutadiene–nylon 6 block copolymers have been prepared from isocyanate-terminated prepolymers. From extraction and fractionation data the products obtained were found to be mixtures of both homopolymers and pure block copolymer. The polybutadiene–nylon 6 copolymers are extremely pliable at ambient temperatures even at high ?-caprolactam contents (70–80 wt-%). This is true even though these copolymers show a crystalline melting point at 213°C similar to poly-?-caprolactam. Presumably this unusual behavior occurs because of the nature of the synthesis which renders the butadiene portion of these copolymers the continuous phase. Plasticity measurements indicate that pliability is dependent on the molecular weight of the block poly-?-caprolactam.  相似文献   

13.
Monodispersed poly(4-bromostyrenes) (PBs) and their block copolymers with styrene, isoprene, and 3-methylbutene were prepared and characterized by GPC and NMR. Polystyryl and α-methylstyryl carbanions act as effective initiators of the anionic polymerization of Bs in THF. The undersirable side reactions, due to thermally or photochemically induced decomposition of the bromostyryl carbanions, PBs?, may be eliminated by conducting the reaction at ?78°C and in the dark. Under such conditions, the rate constant of propagation, kp (?78°), is 1.5 × 103 M?1 s?1. Radical anions, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm Bs}^{\mathop - \limits_ \cdot} $\end{document}, formed as result of electron transfer from sodium naphthalenide to Bs, may eject spontaneously bromine ions. This step and reactions involving the respective phenyl radicals compete at ?78°C with the addition steps leading to polymer formation. Electron affinity of Bs seems to be much higher than that of styrene or isoprene, and PBs? carbanions do not add to the latter monomers. Addition of Bs to polyisoprenyl carbanions leads to formation of the BsIBs block copolymers. BsIBs, prepared in THF, may be converted by preferential hydrogenation of the 1–2 adducts into block copolymers of Bs with poly(2-methylbutene) and isoprenyl segments. The effectiveness of Bs as a flame retarding constituent of polymeric systems seems to be much more pronounced when it is incorporated in a “block” than in a random fashion. A considerably larger fraction of PBs is required to achieve the same LOI value when the respective homopolymers are blended. Spatial distribution of the easily charred microdomains in the block copolymers is believed to be responsible for this phenomenon.  相似文献   

14.
Perfluorocyclopropene undergoes free-radical copolymerization with ethylene, isobutylene, cis- and trans-2-butene, vinyl acetate, methyl vinyl ether, vinyl chloride, styrene, acrylonitrile, tetrafluoroethylene, vinyl fluoride, and vinylidene fluoride. The copolymerization proceeds most readily with electron-rich olefins such as methyl vinyl ether (to yield a 1:1 copolymer), but conditions were found to give copolymers with electron-deficient olefins such as tetrafluoroethylene and vinylidene fluoride. Copolymers with methyl vinyl ether, tetrafluoroethylene, vinyl fluoride, and vinylidene fluoride were examined in detail. Evidence is presented that the perfluorocycloproply ring is incorporated intact into the copolymer and can be subsequently isomerized to a perfluoropropenyl unit by heating at 200–300°C.  相似文献   

15.
Abstract

The copolymerization system of styrene (ST) and citraconic (α-methymaleic) anhydride (CA) was found to form semi-alternating copolymers when polymerized with a total monomer concentration of 4 mol/L in CCl4 at 50°C, with alternating copolymers being formed only when the CA mole fraction in feed was greater than 0.9. More than 50% of the linkage configurations at the cyclic CA units in the copolymers were found to be in cis configuration. This, together with the following observations, is consistent with a participation of the electron donor-acceptor (EDA) complex formed between ST and CA: (a) the complex participation model fits best, although only marginally, to the experimental triad mole fraction of alternating sequences; (b) the alternating monomer unit sequences and the cis linkage configuration at the cyclic CA units are more efficiently formed in non polar CCl4 solutions than in polar methy ethyl ketone. The equilibrium constant for the EDA complexation of ST and CA in CCl4 at 23°C is determined to be 0.142 ± 0.015 L/mol.  相似文献   

16.
The free-radical copolymerization of α-methylstyrene and styrene has been studied in toluene and dimethyl phthalate solutions at 60°C. Gas chromatography was used to monitor the rate of consumption of monomers. For styrene alone, the measured rate of polymerization Rp and M?n of the polymer coincided with values expected from previous studies by other workers. Solution viscosity η affected Rp and M?n of styrene homopolymers and copolymers as expected on the basis of an inverse proportionality between η1/2 and termination rate. The rate of initiation by azobisisobutyronitrile appears to be independent of monomer feed composition in this system. Molecular weights of copolymers can be accounted for by considering combinative termination only. The effects of radical chain transfer are not significant. A theory is proposed in which the rate of termination of copolymer radicals is derived statistically from an ideal free-radical polymerization model. This simple theory accounts quantitatively for Rp and M?n data reported here and for the results of other workers who have favored more complicated reaction models because of the apparent failure of simple copolymer reactivity ratios to predict polymer composition. This deficiency results from systematic losses of low molecular weight copolymer species in some analyses. Copolymer reactivity ratios derived with the assumption of a simple copolymer model and based on rates of monomer loss can be used to predict Rp values measured in other laboratories without necessity for consideration of depropagation or penultimate unit effects. The 60°C rate constants for propagation and termination in styrene homopolymerization were taken to be 176 and 2.7 × 107 mole/l.-sec, respectively. The corresponding figures for α-methylstyrene are 26 and 8.1 × 108 mole/l.-sec. These constants account for the sluggish copolymerization behavior of the latter monomer and the low molecular weights of its copolymers. The simple reaction scheme proposed here suggests that high molecular weight styrene–α-methylstyrene copolymers can be produced at reasonable rates at 60°C by emulsion polymerization. This is shown to be the case.  相似文献   

17.
A mixture of homopolymer and graft copolymer was obtained by adding the monomer at 0°C to the polylithiodiene solution. Styrene, methyl methacrylate, and acrylonitrile were used as the monomers. Polylithiodienes were prepared by the metalation of diene polymers, i.e., polybutadiene or polyisoprene, with the use of n-butyllithium in the presence of a tertiary amine (N,N,N′,N′-tetramethylethylenediamine) in n-heptane. The graft copolymers were separated by solvent extraction and were confirmed by turbidimetric titration and elementary analysis. Oxidation of the polybutadiene–styrene grafts revealed that the molecular weight of the side chains was the same as the molecular weight of the free polystyrene formed. The grafting efficiency and grafting percentage were studied for polybutadiene–styrene graft copolymers prepared under various conditions.  相似文献   

18.
Isotactic polypropylene of various degrees of crosslinking was prepared using high concentrations of dicumyl peroxide as the crosslinking agent. Free radicals were generated by γ irradiation of crosslinked iso-PP with a dose of 2.4 Mrad. It was found that the rate constant for free-radical decay is independent of crosslinking in the temperature range from ?30 to +20°C. The result is discussed from the point of view of degradation processes taking place simultaneously with crosslinking of iso-PP.  相似文献   

19.
Vinyl-1,2 polybutadiene (vinyl-PBD) was used as the backbone polymer for the grafting of styrene, methacrylate, and acrylate monomers using both benzoyl peroxide and AIBN initiators. Radical attack on the backbone can occur through the pendant vinyl group or at the tertiary, allylic hydrogen site. Effective graft sites are formed via double bond addition of either primary (initiator) or polymer radicals. The production of tertiary allylic radicals on the backbone chain also occurs and results in moderate to dramatic reaction rate re-tardation in every monomer system. The type of initiator is only important when the polymer radicals are not very reactive, as in the case of styrene, and to a lesser extent for methacrylate monomer. Graft efficiencies are generally higher when using vinyl-PBD than when using cis-PBD. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
Differential scanning calorimetry (DSC) does not allow for easy determination of the glass‐transition temperature (Tg) of the polystyrene (PS) block in styrene–butadiene–styrene (SBS) block copolymers. Modulated DSC (MDSC), which deconvolutes the standard DSC signal into reversing and nonreversing signals, was used to determine the (Tg) of both the polybutadiene (PB) and PS blocks in SBS. The Tg of the PB block was sharp, at ?92 °C, but that for the PS blocks was extremely broad, from ?60 to 125 °C with a maximum at 68 °C because of blending with PB. PS blocks were found only to exist in a mixed PS–PB phase. This concurred with the results from dynamic mechanical analysis. Annealing did not allow for a segregation of the PS blocks into a pure phase, but allowed for the segregation of the mixed phase into two mixed phases, one that was PB‐rich and the other that was PS‐rich. It is concluded that three phases coexist in SBS: PB, PB‐rich, and PS‐rich phases. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 276–279, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号