首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dispersive liquid-liquid microextraction (DLLME) coupled with high-performance liquid chromatography-variable wavelength detector (HPLC-VWD) was developed for extraction and determination of chloramphenicol (CAP) and thiamphenicol (THA) in honey. In this extraction method, 1.0 mL of acetonitrile (as dispersive solvent) containing 30 μL 1,1,2,2-tetrachloroethane (as extraction solution) was rapidly injected by syringe into a 5.00-mL water sample containing the analytes, thereby forming a cloudy solution. After extraction, phase separation was performed by centrifugation and the enriched analytes in the sedimented phase were determined by HPLC-VWD. Some important parameters, such as the nature and volume of extraction solvent and dispersive solvent, extraction time, sample solution pH, sample volume and salt effect were investigated and optimized. Under the optimum extraction condition, the method yields a linear calibration curve in the concentration range from 3 to 2000 μg kg−1 for target analytes. The enrichment factors for CAP and THA were 68.2 and 87.9, and the limits of detection (S/N = 3) were 0.6 and 0.1 μg kg−1, respectively. The relative standard deviations (RSDs) for the extraction of 10 μg kg−1 of CAP and THA were 4.3% and 6.2% (n = 6). The main advantages of DLLME-HPLC method are simplicity of operation, rapidity, low cost, high enrichment factor, high recovery, good repeatability and extraction solvent volume at microliter level. Honey samples were successfully analyzed using the proposed method.  相似文献   

2.
The synthesis and evaluation of a molecularly imprinted polymer (MIP) used as a selective solid-phase extraction sorbent and coupled to high-performance liquid chromatography (HPLC) for the efficient determination of sulfamerazine (SMR) in pond water and three fishes are reported. The polymer was prepared using SMR as the template molecule, methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the crosslinking monomer in the presence of tetrahydrofuran as the solvent. The SMR-imprinted polymers and nonimprinted polymers were characterized by FT-IR and static adsorption experiments. The prepared SMR-imprinted material showed a high adsorption capacity, significant selectivity and good site accessibility. The maximum static adsorption capacities of the SMR-imprinted and nonimprinted materials for SMR were 108.8 and 79.6 mg g−1, respectively. The relative selectivity factor of this SMR-imprinted material was 1.6. Several parameters influencing the solid-phase extraction process were optimized. Finally, the SMR-imprinted polymers were used as the sorbent in solid-phase extraction to determine SMR in pond water and three fishes with satisfactory recovery. The average recoveries of the MIP-SPE method were 94.0% in ultrapure water and 95.8% in pond water. Relative standard deviations ranging from 0.3% to 5.2% in MIP were acquired. The results for the SMR concentrations in crucian, carp and wuchang fish were 66.0, 127.1 and 51.5 ng g−1, respectively. The RSDs (n = 5) were 3.51%, 0.53% and 5.08%, respectively. The limit of detection (LOD) for SMR was 1 ng g−1 and the limit of quantitation (LOQ) was 3.5 ng g−1.  相似文献   

3.
A rapid technique based on dynamic microwave-assisted extraction coupled with on-line solid-phase extraction of high-performance liquid chromatography (DMAE-SPE-HPLC) has been developed. A TM010 microwave resonance cavity built in the laboratory was applied to concentrate the microwave energy. The sample placed in the zone of microwave irradiation was extracted with 95% acetonitrile (ACN) aqueous solution which was driven by a peristaltic pump at a flow rate of 1.0 mL min−1. The extraction can be completed in a recirculating system in 10 min. When a number of extraction cycles were completed, the extract (1 mL) was diluted on-line with water. Then the extract was loaded into an SPE column where the analytes were retained while the unretained matrix components were washed away. Subsequently, the analytes were automatically transferred from the SPE column to the analytical column and determined by UV detector at 238 nm. The technique was used for determination of organochlorine pesticides (OCPs) in grains, including wheat, rice, corn and bean. The limits of detection of OCPs are in the range of 19-37 ng g−1. The recoveries obtained by analyzing the four spiked grain samples are in the range of 86-105%, whereas the relative standard deviation (R.S.D.) values are <8.7% ranging from 1.2 to 8.7%. Our method was demonstrated to be fast, accurate, and precise. In addition, only small quantities of solvent and sample were required.  相似文献   

4.
In this study a reversed phase ion-pair high-performance liquid chromatography (HPLC) method using charged aerosol detection (CAD) was developed and fully validated for the pharmaceutical quality control of l-aspartic acid (Asp). With a slight modification, the method also allows the evaluation of related substances in l-alanine (Ala). The method enables simultaneous control of related amino acids and of possibly occurring organic acids contaminants. A minimum limit of quantification of 0.03% could be achieved for all occurring related substances. Moreover, the detector sensitivity of the CAD was compared with an evaporative light scattering detector (ELSD). Depending on the analyte the CAD was found to be 3.6–42 times more sensitive than the ELSD. The HPLC method was applied to the purity testing of 8 samples of pharmaceutical grade and reagent grade Asp and of 12 samples of Ala supplied by various manufacturers. Both substances were found to be of high purity (greater than 99.8% for Asp and greater than 99.9% for Ala). Malic acid and Ala were the major impurities in Asp. Asp and glutamic acid (Glu) were the only detectable impurities in Ala.  相似文献   

5.
A new and fast hollow fiber based liquid phase microextraction (HF-LPME) method using volatile organic solvents coupled with high-performance liquid chromatography (HPLC) was developed for determination of aromatic amines in the environmental water samples. Analytes including 3-nitroaniline, 3-chloroaniline and 4-bromoaniline were extracted from 6 mL basic aqueous sample solution (donor phase, NaOH 1 mol L−1) into the thin film of organic solvent that surrounded and impregnated the pores of the polypropylene hollow fiber wall (toluene, 20 μL), then back-extracted into the 6 μL acidified aqueous solution (acceptor phase, HCl 0.5 mol L−1) in the lumen of the two-end sealed hollow fiber. After the extraction, 5 μL of the acceptor phase was withdrawn into the syringe and injected directly into the HPLC system for the analysis. The parameters influencing the extraction efficiency including the kind of organic solvent and its volume, composition of donor and acceptor phases and the volume ratio between them, extraction time, stirring rate, salt addition and the effect of the analyte complexation with 18-crown-6 ether were investigated and optimized. Under the optimal conditions (donor phase: 6 mL of 1 mol L−1 NaOH with 10% NaCl; organic phase: 20 μL of toluene; acceptor phase: 6 μL of 0.5 mol L−1 HCl and 600 m mol L−1 18-crown-6 ether; pre-extraction and back-extraction times: 75 s and 10 min, respectively; stirring rate: 800 rpm), the obtained EFs were between 259 and 674, dynamic linear ranges were 0.1-1000 μg L−1 (R > 0.9991), and also the limits of detection were in the range of 0.01-0.1 μg L−1. The proposed procedure worked very well for real environmental water samples with microgram per liter level of the analytes, and good relative recoveries (91-102%) were obtained for the spiked sample solutions.  相似文献   

6.
A sensitive method based on high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection was developed for the determination of carbamazepine (CBZ) and one of its active metabolites, carbamazepine-10,11-epoxide (CBZ-E) in human plasma. CBZ, CBZ-E and the internal standard (IS) 10,11-dihydrocarbamazepine were extracted from human plasma into methyl tert-butyl ether. CBZ, CBZ-E and the IS were successfully separated on an RP C18 column with a mobile phase of acetonitrile:methanol:water (18:19:63, v/v/v) and monitored via UV detection at 210 nm. The calibration curves were linear over the concentration ranges of 0.01–10 μg/mL for CBZ and 0.005–5 μg/mL for CBZ-E in human plasma, respectively. The method displayed excellent sensitivity, precision and accuracy, and was successfully applied to the quantification of CBZ and CBZ-E in human plasma after oral administration of a single 200 mg CBZ CR tablet. This method is suitable for bioequivalence studies following single doses given to healthy volunteers.  相似文献   

7.
We have used on-line microdialysis sampling coupled with high-performance liquid chromatography and UV-vis detection to simultaneously determine the contents of ascorbyl glucoside (AA-2G), kojic acid (KA), and niacinamide (VitB3) in commercial bleaching cosmetics. Our results indicate that AA-2G, KA, and VitB3 separated well within 4.5 min on a reverse-phase Hypersil Fluophase PFP column when eluting with 0.020 M phosphate buffer solution in 40% (v/v) methanol at pH 5.5. The calibration curves were linear over the ranges 0.068-304, 0.071-284, and 0.024-488 μg mL−1 for AA-2G, KA, and VitB3, respectively, with correlation coefficients for the linear regression analyses falling within the range 0.9982-0.9999. The detection limits for AA-2G, KA, and VitB3 were 0.01, 0.01, and 0.007 μg mL−1, respectively. The detection wavelength was robust when the levels of the analytes in the samples were high (0.1-2%). The analytes were all detected using ultraviolet light (254 nm). The compounds diffuse through the membrane more readily when KA and VitB3 are in their molecular forms and AA-2G is ionized. The recoveries were in the range 92-106% with good reproducibility (R.S.D. = 3.9-8.7%). We used this procedure to assay six commercially available bleaching cosmetics; our results confirmed not only the precision of the method but also the claims made on the labels of the cosmetics. This approach provides a very simple means to determine the contents of AA-2G, KA, and VitB3 in various dosages in bleaching cosmetics.  相似文献   

8.
Different second-order multivariate calibration algorithms, namely parallel factor analysis (PARAFAC), N-dimensional partial least-squares (N-PLS) and multivariate curve resolution-alternating least-squares (MCR-ALS) have been compared for the analysis of four fluoroquinolones in aqueous solutions, including some human urine samples (additional four fluoroquinolones were simultaneously determined by univariate calibration). Data were measured in a short time with a chromatographic system operating in the isocratic mode. The detection system consisted of a fast-scanning spectrofluorimeter, which allows one to obtain second-order data matrices containing the fluorescence intensity as a function of retention time and emission wavelength. The developed approach enabled us to determine eight analytes, some of them with overlapped profiles, without the necessity of applying an elution gradient, and thus significantly reducing both the experimental time and complexity. The study was employed for the discussion of the scopes of the applied second-order chemometric tools. The quality of the proposed technique coupled to each of the evaluated algorithms was assessed on the basis of the figures of merit for the determination of fluoroquinolones in the analyzed water and urine samples. Univariate calibration of four analytes led to limits of detection in the range 20–40 ng mL−1 and root mean square errors for the validation samples in the range 30–60 ng mL−1 (corresponding to relative prediction errors of 3–8%). The ranges for second-order multivariate calibration (using PARAFAC and N-PLS) of the remaining four analytes were: limit of detection, 2–8 ng mL−1, root mean square errors, 3–50 ng mL−1 and relative prediction errors, 1–5%.  相似文献   

9.
A new thiol-reactive derivatizing reagent, 3-iodoacetylaminobenzanthrone (IAB) has been developed for thiol analysis in liquid chromatography. In aqueous methanol containing 15 mM pH 8.3 H3BO3-KCl-Na2CO3 buffer, IAB reacted with thiols at 35 °C for 15 min. The derivatives of IAB with glutathione (GSH), cysteine (Cys), homocysteine (Hcy) and N-acetylcysteine (Nac) were well separated on a C18 column with the mobile phase of methanol-water (50:50, v/v) containing 15 mM pH 2.7 H3cit-Na2HPO4 buffer. At λex/λem=420/540 nm, the detection limits were 20, 20, 55 and 40 fmol (1, 1, 2.3 and 2 nM), respectively, with a signal-to-noise ratio of 3. Owing to the preferential selectivity of iodoacetamidyl moiety to SH group, amino acids, aliphatic amines, phenol and alcohols had no obvious interference with the determination. The proposed method has been applied to the determination of thiols in human blood with recoveries of 98.5-105.3%.  相似文献   

10.
Zhang Y  Zhang Z  Qi G  Sun Y  Wei Y  Ma H 《Analytica chimica acta》2007,582(2):229-234
The determination of indomethacin (INM) in pharmaceutical and biological samples by means of high-performance liquid chromatography (HPLC) with in situ electrogenerated Mn(III) chemiluminescence (CL) detection was proposed. The method was based on the direct CL reaction of INM and Mn(III), which was in situ electrogenerated by constant current electrolysis. The chromatographic separation was carried out on Nucleosil RP-C18 column (250 mm × 4.6 mm; i.d., 5 μm; pore size, 100 Å) at 20 °C. The mobile phase consisted of methanol:water:acetic acid = 67:33:0.1 solution. At a flow rate of 1.0 mL min−1, the total run time was 10 min. The effects of several parameters on the HPLC resolution and CL emission were studied systematically. Under the optimal conditions, a linear range from 0.01 to 10 μg mL−1(R2 = 0.9991), and a detection limit of 8 ng mL−1 (signal-to-noise ratio = 3) for INM were achieved. The relative standard deviations (R.S.D.) for 0.1 μg mL−1 INM were 2.2% within a day (n = 11) and 3.0% on 5 consecutive days (n = 6), respectively. The recovery of INM from urine samples was more than 92%. The applicability of the method for the analysis of pharmaceutical and biological samples was examined.  相似文献   

11.
The potential of eggshell membrane (ESM) as a novel solid-phase extraction bio-adsorbent was investigated in the present study. The ESM with a unique structure of intricate lattice network showed a predominant ability to capture linear alkylbenzene sulfonates (LAS) as a model of organic pollutants by the hydrophobic interactions between ESM and LAS molecular at pH very close to the isoelectric point of ESM, which was similar to the most widely used trapping mechanism for SPE. Under the optimal conditions, the breakthrough capacities of the ESM packed cartridge for C10–C13 LAS homologues were found to be 30, 53, 50, and 43 μg g−1, respectively. On the basis of high-performance liquid chromatography separation and UV detection of LAS homologues, the proposed system could respond down to 0.027 ng mL−1 of LAS with a linear calibration range from 0.2 to 100 ng mL−1, showing a good LAS enrichment ability of eggshell membrane biomaterial with high sensitivity, and could be successfully used for the detection of residual LAS in environmental water samples. The reproducibility among columns was satisfactory (RSD among columns is less than 10%). A comparison study with ESM, C8 and C18 as adsorbents for LAS demonstrated that ESM-based bio-adsorbent was advantageous over C8 and C18, the widely used traditional adsorbents.  相似文献   

12.
《Analytica chimica acta》2004,520(1-2):57-67
Water- and fat-soluble vitamins were separated on a MetaChem Polaris C18-A (150 mm×4.6 mm, 3 μm particle size) in a single run using combined isocratic and linear gradient elution with a mobile phase consisting of 0.010% trifluoroacetic acid of pH 3.9 (solvent A) and methanol (solvent B) at the flow rate 0.7 ml min−1. A linear gradient profile (A:B) started at 95:5 and was constant in the first 4 min, then linearly decreased up to 2:98 during the next 6 min, then it was constant in the next 20 min and finally linearly increased up to 95:5 ratio of water phase in the last 5 min of the separation. The most suitable detection wavelength for simultaneous vitamin determination was 280 nm. The method was applied for the solid sample of pharmaceutical preparation (B-Komplex), fortified powdered drinks (multi-vitamin) and food samples. The results were in good agreement with the declared values.  相似文献   

13.
石芳  寿旦  金米聪  王宏伟  陈旭光  朱岩 《色谱》2022,40(2):139-147
随着麻醉剂广泛用于渔业生产过程和水产品运输等领域,建立水产品中麻醉剂残留的检测方法具有重要意义.由于水产品基质复杂且麻醉剂残留水平低,因此需要合适的前处理方法以提高检测灵敏度.该研究基于分散固相萃取-高效液相色谱,建立了一种同时检测水产品中普鲁卡因、丁氧卡因、三卡因、丁香酚、甲基丁香酚、异丁香酚、甲基异丁香酚7种麻醉剂...  相似文献   

14.
A fully automated method for the simultaneous determination of verapamil and its main metabolite norverapamil in human plasma is described. This method is based on on-line sample preparation using dialysis followed by clean-up and enrichment of the dialysate on a precolumn and subsequent HPLC analysis with fluorometric detection. All sample handling operations were performed automatically by a sample processor equipped with a robotic arm (ASTED system). The plasma samples were dialysed on a cellulose acetate membrane (cut-off: 15 kD) and the dialysate was purified and enriched on a short pre-column filled with cyanopropyl silica. Before starting dialysis, this trace enrichment column (TEC) was first conditioned with the HPLC mobile phase and then with pH 3.0 acetate buffer. 370 μl of plasma sample spiked with the internal standard (gallopamil) were dialysed in the static-pulsed mode. The solution at the donor side was pH 3.0 acetate buffer containing Triton X-100 while the acceptor solution was made of the same acetate buffer. When dialysis was discontinued, the analytes were desorbed from the TEC by the HPLC mobile phase and transferred to the C18 analytical column by means of a switching valve. This mobile phase consisted of a mixture of acetonitrile, pH 3.0 acetate buffer and 2-aminoheptane. The influence of different parameters of the dialysis process on the recovery of verapamil and norverapamil has been studied. The effect of the volume, the aspirating and dispensing flow-rates of the dialysis solution has been investigated. The recoveries of verapamil and norverapamil in plasma were close to 75% and the limits of quantification were 5 ng/ml for both analytes. The method was found to be linear in the concentration range from 5 to 500 ng/ml (r2: 0.9996 for both analytes). The intra-day and inter-day reproducibilities at a concentration of 100 ng/ml were 2.3% and 5.6% for verapamil and 1.7% and 5.1% for norverapamil, respectively.  相似文献   

15.
A simple, sensitive, selective, and low-cost method is proposed for rapidly determining nitric oxide (NO) in some rat tissues. Polymer monolith microextraction (PMME) using a poly(methacrylic acid–ethylene glycol dimethacrylate) (MAA-EGDMA) monolithic column was combined with derivatization of NO using 1,3,5,7-tetramethyl-8-(3′,4′-diaminophenyl)-difluoroboradiaza-s-indacene (TMDABODIPY), and this was used to analyze the derivatives of NO by high-performance liquid chromatography (HPLC) with fluorescence detection at λ ex/λ em = 498/507 nm. The baseline separation of TMDABODIPY and its NO derivative is performed under simple conditions in which a C18 column is used and eluted with 50 mmol L−1 ethanolamine and methanol. The conditions for the extraction of NO derivatives were optimized. The limit of detection of NO was 2 × 10−12 mol L−1 (S/N = 3). The linearity range of the method was 9 × 10−11−4.5 × 10−8 mol L−1. The interday and intraday relative standard deviations were less than 5%. The proposed method was successfully applied to the determination of NO levels in some rat tissue samples including heart, kidney, and liver with recoveries varying from 87.1 to 95.2%.  相似文献   

16.
A simple, rapid and sensitive on-line method for the simultaneous determination of benzoic and sorbic acids in food was developed by coupling in-tube solid-phase microextraction (SPME) to high-performance liquid chromatography (HPLC) with UV detection. The diethylamine-modified poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolithic capillary selected as the extraction medium exhibited a high extraction capability towards benzoic and sorbic acids. To obtain optimum extraction performance, several in-tube SPME parameters were investigated, including pH value, inorganic salt, and the organic solvent content of the sample matrix. After simple dilution with 0.02 mol/L phosphate solution (pH 4.0), carbonated drink, juice drink, sauce and jam samples could be directly injected for extraction. For succade samples, a small amount of acetonitrile was required to extract analytes prior to dilution and subsequent extraction. The linearity of the method was investigated over a concentration range of 5–20000 ng/mL for both analytes, and the correlation coefficients (R 2 values) were higher than 0.999. The detection limits for benzoic and sorbic acids were 1.2 and 0.9 ng/mL, respectively. The method reproducibility was tested by evaluating the intra- and interday precisions; relative standard deviations of less than 4.4 and 9.9%, respectively, were obtained. Recoveries of compounds from spiked food samples ranged from 84.4 to 106%. The developed method was shown to be suitable for the routine monitoring of benzoic and sorbic acids in various types of food samples.  相似文献   

17.
A high-performance liquid chromatography method coupled to coulometric detection has been applied for the determination, in a single run, of up to eight macrolide antibiotics (erythromycin [ERY], tylosin [TYL], tilmicosin [TILM], spiramycin 2 [SPI 2], spiramycin 3 [SPI 3], josamycin [JOS], kitasamycin [KIT], and rosamicin [ROS]) in spiked porcine and bovine urine. Quantification was performed using matrix-matched calibration with roxithromycin (ROX) as the internal standard. The detection limits for each drug were below 3.5 ng injected (equivalent to an initial concentration below 0.07 mg L–1) for porcine urine and below 5 ng injected (equivalent to an initial concentration below 0.10 mg L–1) for bovine urine. Recoveries from urine samples spiked at three different concentrations within the linear range were not significantly dependent on concentration. The entire procedure provides average macrolide recoveries ranging from 69.7 to 96.6% for bovine urine and from 75.5 and 96.1% for porcine urine.  相似文献   

18.
A new high-performance liquid chromatographic (HPLC) method for measuring low molecular weight (LMW) thiol-containing compounds, including cysteine (CysH), glutathione (GSH), N-acetylcysteine (Nac), penicillamine (PA), and 2-mercaptoethanol (2-ME), has been developed by using 5-methyl-(2-(m-iodoacetylaminophenyl)benzoxazole (MIPBO) as fluorescence-labeling reagent. The derivatization and separation conditions have been investigated in detail. Detection limits ranging from 3.5 to 15.0 fmol were achieved for the thiols investigated in a 16 min separation with detection wavelengths 310 and 375 nm for the excitation and emission, respectively. The utility of the proposed method has been validated by measuring CysH in human urine samples.  相似文献   

19.
A simple and rapid detection method of oligosaccharides using high-performance liquid chromatography with a charged aerosol detection (HPLC-CAD) was studied. The direct detection of a sialylglycopeptide (SGP) derived from egg yolk was accomplished by HPLC-CAD using an amido-silica column, and its limit of detection was 0.40 pmol [signal-to-noise ratio (S/N) = 3]. The sensitivity of this method was lower than that of the fluorescence detection; however, the method showed approximately 5 times higher sensitivity than that using the conventional UV absorbance detection. Furthermore, this method was used for the analysis of the acid hydrolysis products of SGP. Monosialo- and asialo-oligosaccharides as well as free sialic acid were detected without using fluorescent derivatization. These results indicate that the present method is a new tool for the analysis of oligosaccharides.  相似文献   

20.
We report herein an extraction method for the analysis of perfluorinated compounds in human serum based on magnetic core–mesoporous shell microspheres with decyl-perfluorinated interior pore-walls (Fe3O4@mSiO2-F17). Thanks to the unique properties of the Fe3O4@mSiO2-F17 microspheres, macromolecules like proteins could be easily excluded from the mesoporous channels due to size exclusion effect, and perfluorinated compounds (PFCs) in protein-rich biosamples such as serum could thus be directly extracted with the fluorocarbon modified on the channel wall without any other pretreatment procedure. The PFCs adsorbed Fe3O4@mSiO2-F17 microspheres could then be simply and rapidly isolated by using a magnet, followed by being identified and quantified by LC–MS/MS (high-performance liquid chromatography coupled to tandem mass spectrometry). Five perfluorinatedcarboxylic acids (C6, C8–C11) and perfluorooctane sulfonate (PFOS) were selected as model analytes. In order to achieve the best extraction efficiency, some important factors including the amount of Fe3O4@mSiO2-F17 microspheres added, adsorption time, type of elution solvent, eluting solvent volume and elution time were investigated. The ranges of the LOD were 0.02–0.05 ng mL−1 for the six PFCs. The recovery of the optimized method varies from 83.13% to 92.42% for human serum samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号