首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Biosynthesis of silver nanoparticles (AgNPs) was achieved by a novel, simple green chemistry procedure using citrus sinensis peel extract as a reducing and a capping agent. The effect of temperature on the synthesis of silver nanoparticles was carried out at room temperature (25°C) and 60°C. The successful formation of silver nanoparticles has been confirmed by UV-vis, FTIR, XRD, EDAX, FESEM and TEM analysis and their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa (gram-negative), and Staphylococcus aureus (gram-positive) has been studied. The results suggest that the synthesized AgNPs act as an effective antibacterial agent.  相似文献   

2.
The present study highlights the biosynthesis of silver nanoparticles (AgNPs) using culture supernatant of Massilia sp. MAHUQ-52 as well as the antimicrobial application of synthesized AgNPs against multi-drug resistant pathogenic Klebsiella pneumoniae and Salmonella Enteritidis. Well-defined AgNPs formation occurred from the reaction mixture of cell-free supernatant and silver nitrate (AgNO3) solution within 48 h of incubation. UV-visible spectroscopy analysis showed a strong peak at 435 nm, which corresponds to the surface plasmon resonance of AgNPs. The synthesized AgNPs were characterized by FE-TEM, EDX, XRD, DLS and FT-IR. From FE-TEM analysis, it was found that most of the particles were spherical shape, and the size of synthesized nanoparticles (NPs) was 15–55 nm. EDX spectrum revealed a strong silver signal at 3 keV. XRD analysis determined the crystalline, pure, face-centered cubic AgNPs. FT-IR analysis identified various functional molecules that may be involved with the synthesis and stabilization of AgNPs. The antimicrobial activity of Massilia sp. MAHUQ-52 mediated synthesized AgNPs was determined using the disk diffusion method against K. pneumoniae and S. Enteritidis. Biosynthesized AgNPs showed strong antimicrobial activity against both K. pneumoniae and S. Enteritidis. The MICs of synthesized AgNPs against K. pneumoniae and S. Enteritidis were 12.5 and 25.0 μg/mL, respectively. The MBC of biosynthesized AgNPs against both pathogens was 50.0 μg/mL. From FE-SEM analysis, it was found that the AgNPs-treated cells showed morphological changes with irregular and damaged cell walls that culminated in cell death.  相似文献   

3.
Pseudomonas aeruginosa were used for extra-cellular biosynthesis of gold nanoparticles (Au NPs). Consequently, Au NPs were formed due to reduction of gold ion by bacterial cell supernatant of P. aeruginosa ATCC 90271, P. aeruginosa (2) and P. aeruginosa (1). The UV-vis and fluorescence spectra of the bacterial as well as chemical prepared Au NPs were recorded. Transmission electron microscopy (TEM) micrograph showed the formation of well-dispersed gold nanoparticles in the range of 15-30 nm. The process of reduction being extra-cellular and may lead to the development of an easy bioprocess for synthesis of Au NPs.  相似文献   

4.
In this work, silver nanoparticles were synthesized using Salvia microphylla Kunth leaves extract as reducing agent and stabilizing agent. The effect of reaction time and plant extract amount on the biosynthesized nanoparticles were studied. The UV–Vis spectrum indicated that silver nanoparticles show a characteristic surface plasmon resonance at 427 nm. X-ray diffraction experiments show that the silver nanoparticles have a face-centered cubic crystal structure. The density of nanoparticles increases with increasing extract concentration and reaction time. TEM and SEM observations showed well-dispersed quasi-spherical nanoparticles sized in the range of 15–45 nm. The FT-IR analysis suggested the involvement of phenolic compounds in the reduction and stabilization of silver nanoparticles. Synthesized silver nanoparticles showed good antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Finally, the catalytic properties of silver nanoparticles were demonstrated through the degradation of congo red and methyl orange.  相似文献   

5.
Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs) due to their multiple applications. The use of plants in the green synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extract has been reported. Characterizations of nanoparticles were done using different methods, which include; ultraviolet-visible spectroscopy (UV-Vis), powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray fluorescence (EDXF) spectrometry, zeta potential measurements and Fourier transform infrared (FT-IR) spectroscopy. UV-visible spectrum of the aqueous medium containing silver nanoparticles showed absorption peak at around 456 nm. The TEM study showed that mean diameter and standard deviation for the formation of silver nanoparticles were 12.40 ± 3.27 nm. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc) structure. The most needed outcome of this work will be the development of value added products from Callicarpa maingayi for biomedical and nanotechnology based industries.  相似文献   

6.
The use of microorganisms for the synthesis of nanoparticles is in the limelight of modern nanotechnology. Using the bacterium Bacillus licheniformis, the biosynthesis of silver nanoparticles was investigated. These silver nanoparticles were characterized by means of UV-vis spectroscopy, scanning electron microscopy (SEM), electron diffraction spectroscopy (EDX) and X-ray diffraction (XRD). The nanoparticles exhibited maximum absorbance at 440 nm in UV-vis spectroscopy. The XRD spectrum of silver nanoparticles exhibited 2theta values corresponding to the silver nanocrystal. SEM micrographs revealed the formation of well-dispersed silver nanoparticles of 50 nm, and the presence of silver was confirmed by EDX analysis.  相似文献   

7.
Development of reliable and eco-friendly process for synthesis of metallic nanoparticles is an important step in the filed of application of nanotechnology. One of the options to achieve this objective is to use natural processes such as use of biological systems. In this work we have investigated extracellular biosynthesis of silver nanoparticles using Aspergillus fumigatus. The synthesis process was quite fast and silver nanoparticles were formed within minutes of silver ion coming in contact with the cell filtrate. UV–visible spectrum of the aqueous medium containing silver ion showed a peak at 420 nm corresponding to the plasmon absorbance of silver nanoparticles. Transmission electron microscopy (TEM) micrograph showed formation of well-dispersed silver nanoparticles in the range of 5–25 nm. X-ray diffraction (XRD)-spectrum of the silver nanoparticles exhibited 2θ values corresponding to the silver nanocrystal. The process of reduction being extracellular and fast may lead to the development of an easy bioprocess for synthesis of silver nanoparticles.  相似文献   

8.
This study aims at developing a new eco-friendly process for the synthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) using purified URAK. URAK is a fibrinolytic enzyme produced by Bacillus cereus NK1. The enzyme was purified and used for the synthesis of AuNPs and AgNPs. The enzyme produced AgNPs when incubated with 1 mM AgNO3 for 24 h and AuNPs when incubated with 1 mM HAuCl4 for 60 h. But when NaOH was added, the synthesis was rapid and occurred within 5 min for AgNPs and 12 h for AuNPs. The synthesized nanoparticles were characterized by a peak at 440 nm and 550 nm in the UV-visible spectrum. TEM analysis showed that AgNPs of the size 60 nm and AuNPs of size 20 nm were synthesized. XRD confirmed the crystalline nature of the nanoparticles and AFM showed the morphology of the nanoparticle to be spherical. FT-IR showed that protein was responsible for the synthesis of the nanoparticles. This process is highly simple, versatile and produces AgNPs and AuNPs in environmental friendly manner. Moreover, the synthesized nanoparticles were found to contain immobilized enzyme. Also, URAK was tested on RAW 264.7 macrophage cell line and was found to be non-cytotoxic until 100 μg/ml.  相似文献   

9.
The application of nanoscale materials and structures, usually ranging from 1 to 100 nanometers (nm), is an emerging area of nanoscience and nanotechnology. Nanomaterials may provide solutions to technological and environmental challenges in the areas of solar energy conversion, catalysis, medicine, and water-treatment. The development of techniques for the controlled synthesis of nanoparticles of well-defined size, shape and composition, to be used in the biomedical field and areas such as optics and electronics, has become a big challenge. Development of reliable and eco-friendly processes for synthesis of metallic nanoparticles is an important step in the field of application of nanotechnology. One of the options to achieve this objective is to use ‘natural factories’ such as biological systems. This study reports the optimal conditions for maximum synthesis of silver nanoparticles (AgNPs) through reduction of Ag+ ions by the culture supernatant of Escherichia coli. The synthesized silver nanoparticles were purified by using sucrose density gradient centrifugation. The purified sample was further characterized by UV–vis spectra, fluorescence spectroscopy and TEM. The purified solution yielded the maximum absorbance peak at 420 nm and the TEM characterization showed a uniform distribution of nanoparticles, with an average size of 50 nm. X-ray diffraction (XRD) spectrum of the silver nanoparticles exhibited 2θ values corresponding to the silver nanocrystal. The size-distribution of nanoparticles was determined using a particle-size analyzer and the average particle size was found to be 50 nm. This study also demonstrates that particle size could be controlled by varying the parameters such as temperature, pH and concentration of AgNO3.  相似文献   

10.
A simple route for the synthesis of silver-protein (core-shell) nanoparticles using spent mushroom substrate (SMS) has been demonstrated in this work. SMS exhibits an organic surface that reduces silver ions and stabilizes the silver nanoparticles by a secreted protein. The silver nitrate solution incubated with SMS changed to a yellow color from 24 h onward, indicating the formation of silver nanoparticles. The purified solution yielded the maximum absorbance at 436 nm due to surface plasmon resonance of the silver nanoparticles. X-ray analysis of the freeze-dried powder of silver nanoparticles confirmed the formation of metallic silver. Transmission electron microscopic analysis of the samples showed a uniform distribution of nanoparticles, having an average size of 30.5 +/- 4.0 nm, and its corresponding electron diffraction pattern confirmed the face-centered cubic (fcc) crystalline structure of metallic silver. The characteristic fluorescence of the protein shell at 435 nm was observed for the silver nanoparticles in solution, when excited at 280 nm, while Fourier transform infrared (FTIR) spectroscopy confirmed the presence of a protein shell. The silver nanoparticles were found to be stable in solution for more than 6 months. It is observed that the reducing agents from the safflower stalks caused the reduction of silver ions while protein secreted by the fungus stabilized the silver nanoparticles. These silver nanoparticles showed excellent antibacterial activity against two representative bacteria, Staphylococcus aureus (Gram positive) and Klebsiella pneumoniae (Gram negative), in spite of the presence of an organic layer as a shell. Apart from ecofriendliness and easy availability, "SMS" as a biomanufacturing unit will give us an added advantage in ease of handling when compared to other classes of microorganisms.  相似文献   

11.
We report a novel strategy for the biological synthesis of anisotropic gold and quasi-spherical silver nanoparticles by using apiin as the reducing and stabilizing agent. The size and shape of the nanoparticles can be controlled by varying the ratio of metal salts to apiin compound in the reaction medium. The resultant nanoparticles were characterized by UV-vis-NIR, transmission electron microscopy (TEM), FT-IR spectroscopy, X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The interaction between nanoparticles with carbonyl group of apiin compound was confirmed by using FT-IR analysis. TEM photograph confirming the average size of the gold and silver nanoparticles were found to be at 21 and 39 nm. The NIR absorption of the gold nanotriangles is expected to be of application in hyperthermia of cancer cells and in IR-absorbing optical coatings.  相似文献   

12.
In the present study we report the use of cells of a Haloarchaeon for the green synthesis of silver nanoparticles. Biosynthesis of AgNPs occurred within 30 s on exposure of cells of Haloferax alexandrinus to silver nitrate in direct sunlight. Maximum AgNPs production was achieved within 4 min of exposure of silver nitrate (0.05 %) to cells (5 mg/ml), at pH 7, at ambient day temperature (26–34 °C). The AgNPs had characteristic surface plasmon resonance at 420 nm in UV–Vis spectra. Spherical and irregular crystals ranging from 2 to 60 nm in size with an average size of 18 nm were observed in TEM analysis. The FTIR spectral analysis indicated involvement of N–H, –OH, C=O, C–O functional groups present in cells of Haloferax alexandrinus MTCC 3265. The biogenic AgNPs exhibited broad spectrum antimicrobial activity against human and mammalian pathogens, in the order of Pseudomonas aeruginosa ATCC 9027 > Bordetella bronchiseptica ATCC 4617 > Bacillus subtilis ATCC 6633 > Staphylococcus aureus ATCC 6538P > Staphylococcus epidermidis ATCC 12228 > Escherichia coli ATCC 8739 > Salmonella typhimurium ATCC 14028.  相似文献   

13.
With the control of G1 poly(amidoamine) (PAMAM), an evolutionary course of stable colloidal silver from discrete nanoparticles to solid spheres through ultraviolet irradiation reduction of silver nitrate solutions was observed by transmission electron microscopy (TEM). The morphologies of the products depend on the Ag+ concentration. A mechanism of globular assembly was put forward to interpret the evolution of the nanostructures. Powder X-ray diffraction (XRD), electron diffraction (ED) patterns, and X-ray photoelectron spectroscopy (XPS) indicate the presence of cubic symmetry silver. XPS and Fourier transform infrared (FT-IR) spectroscopy confirm that dendrimers have participated in the stabilization and control of Ag nanostructures. In the UV-vis spectra, the intense surface plasmons are centered at 425 and 430 nm corresponding to the shapes of dots and solid spheres, respectively. The solid spheres exhibit excellent catalytic efficiency on the reduction of 2,7-dicholoroflurescein (DCF).  相似文献   

14.
《Arabian Journal of Chemistry》2020,13(12):9139-9144
Silver nanoparticles (AgNPs) from silver nitrate solution are carried out using the flower extract of Calotropis gigantea. Silver nanoparticles were characterized by UV–vis spectrophotometer, X-Ray diffractometer (XRD). Reduction of silver ions in the aqueous solution of silver during the reaction was observed by UV–vis spectroscopy. Crystalline nature of synthesized silver nanoparticles was studied by XRD pattern, refraction peak using the Scherrer’s equation. Antibacterial activity of the silver nanoparticles was performed by disc diffusion method against Bacillus subtilis, Pseudomonas putida and Escherichia coli. The antibacterial activity of synthesized silver nanoparticles by flower extract of C. gigantea was found against B. subtilis (10 mm). Synthesised AgNPs has the efficient antibacterial activity against Gram positive bacteria.  相似文献   

15.
Stable silver nanoparticles have been synthesized using gum karaya acting as both reducing and stabilizing agent without using any synthetic reagent. The reaction is performed using water, which is an environmentally safe solvent. This reaction was carried out in an autoclave at a pressure of 15 psi and 120 °C temperature by varying the time. The influence of different parameters such as time, change of concentration of silver nitrate and concentration of gum karaya on the formation of silver nanoparticles has been studied. The synthesized silver nanoparticles are characterized by UV–Vis spectroscopy, FTIR, XRD and TEM. UV–Vis analysis of the sample confirmed the formation of silver nanoparticles exhibiting a sharp peak at a wavelength of 420 nm. TEM micrographs showed the formation of well-dispersed silver nanoparticles of size 2–4 nm. The antimicrobial activity of silver nanoparticles stabilized in gum karaya is tested against Escherichia coli, Micrococcus luteus and is found to be possessing inhibiting property. The silver nanoparticles stabilized in gum karaya exhibited very good catalytic activity and the kinetics of the reaction was found to be pseudo first order with respect to the 4-nitrophenol.  相似文献   

16.
In this study, silver nanoparticle (AgNP) synthesis was carried out using Onosma sericeum Willd. aqueous extract for the first time, with a simple, economical, and green method without the need for any other organic solvent or external reducing or stabilizing agent. A variety of AgNPs, all of different particle sizes, were synthesized by controlling the silver ion concentration, extract volume, temperature, and pH. It was determined that the optimum conditions for AgNP synthesis were 1 mM AgNO3, pH 8, 25 °C, 20 g/200 mL extract, silver nitrate, and extract ratio 5:1 (v/v). The AgNPs were defined using UV-Vis spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The particle size distribution and zeta potential measurements of the AgNPs were measured using the dynamic light scattering (DLS) technique. It was determined that the AgNPs with a particle size of less than 10 nm showed a higher catalytic effect in the reduction of 2-nitrobenzenamine. It was also found that these nanoparticles had a cytotoxic effect on the MCF-7 breast cancer cell line depending on dosage and time. The resulting IC50 values were between 76.63 µg/mL and 169.77 µg/mL. Furthermore, the biosynthesized AgNPs showed effective antibacterial activity against the Acinetobacter baumannii bacteria. The results of the study showed that synthesized AgNPs can have a promising role in biomedical and nanobiotechnology applications.  相似文献   

17.
以硝酸银为原料,β-环糊精为还原剂和保护剂,一步法合成了粒径为10~30 nm的单分散银纳米粒子,其结构经UV-Vis,FT-IR,XRD和TEM表征。研究了pH、反应温度和γ[n(1)∶n(AgNO_3)]对反应的影响,并提出了银纳米粒子的形成机制。  相似文献   

18.
The green biosynthesis of nanoparticles by plant extracts is an attractive and promising technique for medicinal applications. In the current study, we chose one of the daisy plants, Aaronsohnia factorovskyi (which grows in the Najd region, Saudi Arabia), to investigate its anti-microbial efficacy, in combination with silver nanoparticles. The biosynthesized nanoparticles were evaluated for antibacterial activity against Staphylococcus aureus, Bacillus subtilis (Gram-positive), Pseudomonas aeruginosa, and Escherichia coli, (Gram-negative) using the disc diffusion method, while the antifungal activity was assessed against Fusarium oxysporum, Fusarium solani, Helminthosporium rostratum, and Alternaria alternata. The potential phytoconstituents of the plant extracts were identified by Fourier-transform infrared spectroscopy (FT-IR) techniques, the Field emission scanning electron microscopy (FE-SEM), Chromatography/Mass Spectrometry (GC-MS) techniques, and Zeta potential analysis. The current study revealed the ability of the tested plant extract to convert silver ions to silver nanoparticles with an average diameter of 104–140 nm. Biogenic Aaronsohnia factorovskyi-silver nanoparticles (AF-AgNPs) showed significant antibacterial activity against Staphylococcus aureus with inhibition zone diameter to 19.00 ± 2.94 mm, and antifungal activity against Fusarium solani, which reduced the growth of fungal yarn to 1.5 mm. The innovation of the present study is that the green synthesis of NPs, which is simple, cost-effective, provides stable nano-materials, and can be an alternative for the large-scale synthesis of silver nanoparticles.  相似文献   

19.
A facile synthesis of stable silver nanoparticles having a particle size of <10 nm is described. The synthesis involved reduction of silver acetate with a substituted hydrazine, such as PhNHNH2, in the presence of a 1-alkylamine, such as C16H33NH2, in toluene at 25-60 degrees C. Spin-coated thin films or printed electronic features of alkylamine-stabilized silver nanoparticles could be easily converted at 120-160 degrees C into highly conductive films or elements with conductivity of 2-4 x 104 S cm-1. Organic thin-film transistors with printed silver source/drain electrodes of this nature exhibited field-effect transistor properties which are similar to those of the devices using vacuum-deposited silver electrodes.  相似文献   

20.
《印度化学会志》2021,98(12):100221
Green synthesis of silver nanoparticles was accomplished using peels (rind) extract of Citrus aurantium as a reducing as well as capping agent. Biosynthesized AgNPs (silver nanoparticle) has been characterized via UV–Visible spectroscopy, XRD, SEM, EDAX, TEM and TGA. The observed UV–Vis analysis resulted in the formation of characteristic surface plasmon resonance absorption band centered at 465 ​nm. The observed XRD patterns, having hkl values (111), (200), (220) and (222), confirms the cubic crystalline structure of AgNPs. The average grain size 9.5 ​μm was observed by the SEM technique. Bio synthesized AgNPs were efficiently degrading the methylene blue dye nearly 95.35% in 98 ​h of exposure time. It also degraded acridine orange dye 87.34% and rose bengal dye 90.09% followed by 4h of continuous UV absorption. It also degrades methyl orange dye nearly 51% in 10h of solar irradiation. Synthesized AgNPs can be used as photo-catalyst for degrading toxic dyes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号