首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protonation of M(2)[B(8)H(8)] with HCl or NEt(3)·HCl resulted in M[B(8)H(9)] (M = [PPh(4)](+) or [N(n-Bu(4))](+)). The monoanion was isolated and characterized by (1)H, (1)H{(11)B}, (11)B, and (11)B{(1)H} NMR spectroscopy. The "protonated" form [B(8)H(9)](-) showed a dynamic behavior in solution, which was analyzed by NMR spectroscopy and compared with theoretical calculations. The structures of [B(8)H(9)](-) as well as [B(8)H(8)](2-) were determined by single-crystal X-ray diffraction.  相似文献   

2.
The structurally chiral [7-(2'-pyridyl)-7,8-nido-C(2)B(9)H(11)](-), [](-), anion was prepared by a partial degradation reaction of 1-(2'-pyridyl)-1,2-closo-C(2)B(10)H(11). From this anion a protonated specie, H[7-(2'-pyridyl)-7,8-nido-C(2)B(9)H(11)] , and a tetramethylammonium salt, [NMe(4)][7-(2'-pyridyl)-7,8-nido-C(2)B(9)H(11)], [NMe(4)][] can be obtained. The (1)H{(11)B} DNMR study on in the temperature range from 298 to 203 K identified the weakly basic nitrogen atom in the pyridine ring as the proton accepting site in solid state and low temperature and revealed pronounced weakening of the nitrogen-proton interaction while the temperature increases. Capillary electrophoresis and X-ray diffraction confirmed the pyridine nitrogen atom as the proton binding site. Separation of the electrophoretically pure racemic [7-(2'-pyridyl)-7,8-nido-C(2)B(9)H(11)](-) ion into two peaks by the chiral selector beta-cyclodextrine has been achieved.  相似文献   

3.
Sulfenyl chlorides RSCl (R = p-C(6)H(4)OMe, Ph, p-C(6)H(4)NO(2), CN or 2-C(5)H(4)N) react with 7,8-nido-C(2)B(9)H(12)(-) with asymmetric substitution on the pentagonal C(2)B(3) face to give 9-RS-7,8-nido-C(2)B(9)H(11)(-) (R = p-C(6)H(4)OMe (3), Ph (4), p-C(6)H(4)NO(2) (5), CN (6)) and the zwitterion 9-(S-2-C(5)H(4)NH)-7,8-nido-C(2)B(9)H(11) (7), respectively, in high yield, while tBuSCl did not react and S(2)Cl(2) led to decomposition. Further reaction of 5-7 with iodine gave the corresponding iodo derivatives NMe(4) [9-I-11-RS-7,8-nido-C(2)B(9)H(10)] (R = p-C(6)H(4)NO(2) (8), CN (9)) and the zwitterion 9-I-11-(S-2-C(5)H(4)NH)-7,8-nido-C(2)B(9)H(11) (10), respectively. Compounds 3-10 were fully characterised by (1)H, (11)B, (11)B{(1)H}, (13)C{(1)H} spectroscopy, IR spectroscopy, mass spectrometry and elemental analysis, 3-7 also by (11)B-(11)B{(1)H} COSY NMR spectroscopy and 8-10 by X-ray structure determination.  相似文献   

4.
Alkynes R(1)R(2)C(2) react with the neutral monocarbaborane arachno-4-CB(8)H(14) (1) at elevated temperatures (115-120 degrees C) under the formation of the derivatives of the ten-vertex dicarbaborane nido-5,6-C(2)B(8)H(12) (2) of general formula 9-Me-5,6-R1,R2-nido-5,6-C(2)B(8)H(9) (where R1,R2 = H,H 2a; Me,Me 2b; Et,Et 2c, H,Ph 2d, and Ph,Ph 2e) in moderate yields (26-52%). Side reaction with PhC(2)H also yields 1-Ph-6-Me-closo-1,2-C(2)B(8)H(8) (3d). In contrast, the reaction between [arachno-4-CB(8)H(13)](-) anion ((-)) and PhC(2)H produces a mixture of the closo anions [1-CB7H8]- (4-) and [1-CB6H7]- (5-) (yields 32 and 24%, respectively). Individual compounds were isolated and purified by liquid chromatography and characterized by NMR spectroscopy ((11)B, (1)H and (13)C) combined with two-dimensional [(11)B-(11)B]-COSY and (1)H-{(11)B(selective)}NMR techniques.  相似文献   

5.
Treatment of a solution of excess PCl(3) and PS (PS = "proton sponge" = 1,8-dimethylamino naphthalene) with arachno-4-CB(8)H(14) (1) in CH(2)Cl(2), followed by hydrolysis of the reaction mixture, resulted in the isolation of the eleven-vertex diphosphacarbaborane nido-7,8,9-P(2)CB(8)H(10) (2) (yield 34%) as the main product. Other products isolated from this reaction were the phosphacarboranes nido-7,8,9,10-P(3)CB(7)H(8) (3) (yield 5%) and closo-2,1-PCB(8)H(9) (4) (yield 15%). Compound 2 can be deprotonated by PS in CH(2)Cl(2) or NaH in diethyl ether to give the [nido-7,8,9-P(2)CB(8)H(9)](-) (2(-)()) anion, which gives back the original compound, 2, upon re-protonation. Thermal rearrangement of anion 2(-) (Na(+) salt) at 350 degrees C for 2 h produced the isomeric [nido-7,8,10-P(2)CB(8)H(9)](-) (5(-)()) anion, which was isolated as a PPh(4)(+) salt (yield 86%). Multinuclear ((1)H, (11)B, (31)P, and (13)C), two-dimensional [(11)B-(11)B] COSY, (1)H{(11)B(selective)}, (1)H{(31)P(selective)}, and gradient-enhanced ([(1)H-(13)C] HSQC) magnetic resonance measurements led to complete assignments of all resonances which are in excellent agreement with the structures proposed. Coupling constants, (1)J((31)P,(13)C), (2)J((31)P,C,(1)H), and (1)J((31)P,(31)P), were calculated using the DFT method B3LYP/6-311+G(d,p). The molecular geometries of all compounds were optimized ab initio at a correlated level of theory (RMP2(fc)) using the 6-31G basis set, and their correctness was assessed by comparison of the experimental (11)B and (13)C chemical shifts with those calculated by the GIAO-SCF/II//RMP2(fc)/6-31G method. The computations also include the structures and chemical shieldings of the still unknown isomers [nido-7,10,8-P(2)CB(8)H(9)](-) (6(-)) and [nido-7,9,8-P(2)CB(8)H(9)](-) (7(-)).  相似文献   

6.
Reactions of the [K]+ salts of the [nido-7,9-C2B9H12]- anion (2) and its C-phenylated derivative [7-Ph-nido-7,9-C2B9H11]- (4) with [OsCl2(PPh3)3] (3) proceed in benzene at ambient temperature with the formation of 16-electron chlorohydrido-Os(IV) exo-nido complexes, [exo-nido-10,11-{(Ph3P)2OsHCl}-10,11-(mu-H)2-7-R-7,9-C2B9H8] (5: R = H; 6: R = Ph), along with the small amounts of the charge-compensated nido-carboranes [nido-7,9-C2B9H11PPh3] (7) and [7-Ph-nido-7,9-C2B9H10PPh3] (8) as byproducts. However, when carried out under mild heating in ethanol, the reaction of 2 with 3 selectively afforded a 16-electron dihydrido-Os(IV) exo-nido complex [exo-nido-10,11-{(Ph3P)2OsH2}-10,11-(mu-H)2-7,9-C2B9H9] (9). Structures of both complexes 5 and 9 have been confirmed by single-crystal X-ray diffraction studies, which revealed that nido-carboranes in these species function as a bidentate dicarbollide ligands [7-R-nido-7,9-C2B9H10]2- linked to the Os(IV) center via two B-H...Os bonds involving adjacent B-H vertices in the upper CBCBB belt of the carborane cage. Thus, compounds 5 and 9 represent the first structurally characterized exo-nido-metallacarboranes based on meta-dicarbollide-type ligands. Variable-temperature 1H and 31P{1H} NMR experiments indicate that complex 9 is fluxional in solution and shows an unusual exchange between terminal Os-(H)2 and bridging {B-H}2...Os hydrogen atoms. Upon heating in d8-THF at 65 degrees C, complex 9 converts irreversibly to its closo isomer [2,2-(PPh3)2-2,2-H2-closo-2,1,7-OsC2B9H11] (13), which could thus be obtained as a pure crystalline solid. The structure of 13 has been established on the basis of analytical and multinuclear NMR data and a single-crystal X-ray diffraction study.  相似文献   

7.
A variety of S-alkylated products was prepared by alkylation of methyl thioethers [MeSB(12)H(11)](2-) (5), [1-(MeS)-2(7,12)-(Me(2)S)B(12)H(10)](-) (6-8), and [1,2(7,12)-(MeS)(2)B(12)H(10)](2-) (9-11) with alkyl halides and tosylates in acetonitrile. Since these methyl thioethers can be prepared easily in B-10-enriched form on a large scale and due to their chemical versatility, they are potentially very attractive boron entities for the design and synthesis of therapeutics for boron neutron capture therapy of cancer. It was found that alkylation of 6-8 can be complicated by an equilibrium which establishes between, on the one hand, one of the former species and, on the other hand, 1,2(7,12)-(Me(2)S)(2)B(12)H(10) (2-4) and [1,2(7,12)-(MeS)(2)B(12)H(10)](2-) (9-11). A boronated phosphonate 1-(MeS(CH(2))(4)P(O)(OEt)(2))-7-(Me(2)S)B(12)H(10) (14g) and a gem-bisphosphonate 1-(MeS(CH(2))(3)CH[P(O)(OEt)(2)](2))-7-(Me(2)S)B(12)H(10) (14h) were prepared from thioether 7 and the corresponding iodide and tosylate, respectively, and subsequently converted to their sodium salts. The propargyl sulfonium salts obtained by alkylation of thioethers 7, 8, 10, and 11 with propargyl bromide have been further converted to two- and three-cage oligomers containing both ortho-carborane and dodecaborane moieties. Methyl thioethers derived from closo-[B(12)H(12)](2-) are excellent participants in Michael addition reactions in the presence of a strong acid. The sulfonium salts with tertiary alkyl and vinyl substituents have been prepared by this method. Methyl thioethers 5-11 react with hydroxylamine-O-sulfonate yielding the corresponding aminosulfonium salts, albeit in lower yields as compared to those in the alkylation reactions. Several derivatives of methyl thioethers 5-11 have been characterized by single-crystal X-ray diffraction.  相似文献   

8.
The synthesis and characterization of nido-[1,1,2,2-(CO)(4)-1,2-(PPh(3))(2)-1,2-FeIrB(2)H(5)] (1) is reported. 1 is formed in low yield as a degradation product from the reaction between [{&mgr;-Fe(CO)(4)}B(6)H(9)](-) and trans-Ir(CO)Cl(PPh(3))(2) in THF and is characterized from NMR, IR, and analytical data and by a single-crystal X-ray diffraction study. 1 crystallizes in the monoclinic space group P2(1)/n with a = 12.8622(12), b = 14.3313(12), c = 23.579(3) ?, beta = 97.12(2) degrees, Z = 4, V = 4257.0(8) ?(3), R(1) = 4.83%, and wR(2)()(F(2)) = 12.43%. The heterobimetallaborane structure may be viewed as a derivative of the binary boron hydride nido-[B(4)H(7)](-) and is related to the known homobimetallatetraborane analogues [Fe(2)(CO)(6)B(2)H(6)] and [Co(2)(CO)(6)B(2)H(4)]. 1 exhibits proton fluxionality in its (1)H NMR spectrum, which is related to that found in the latter two compounds.  相似文献   

9.
Mono- and dilithium salts of [3,3'-Co(1,2-C(2)B(9)H(11))(2)](-), (1(-)), react with different chlorosilanes (Me(2)SiHCl, Me(2)SiCl(2), Me(3)SiCl and MeSiHCl(2)) with an accurate control of the temperature to give a set of novel C(c)-mono- (C(c) = C(cluster)) and C(c)-disubstituted cobaltabis(dicarbollide) derivatives with silyl functions: [1-SiMe(2)H-3,3'-Co(1,2-C(2)B(9)H(10))(1',2'-C(2)B(9)H(11))](-) (3(-)); [1,1'-mu-SiMe(2)-3,3'-Co(1,2-C(2)B(9)H(10))(2)](-) (4(-)); [1,1'-mu-SiMeH-3,3'-Co(1,2-C(2)B(9)H(10))(2)](-) (5(-)); [1-SiMe(3)-3,3'-Co(1,2-C(2)B(9)H(10))(1',2'-C(2)B(9)H(11))](-) (6(-)) and [1,1'-(SiMe(3))(2)-3,3'-Co(1,2-C(2)B(9)H(10))(2)](-) (7(-)). In a similar way, the [8,8'-mu-(1',2'-C(6)H(4))-1,1'-mu-SiMe(2)-3,3'-Co(1,2-C(2)B(9)H(9))(2)](-) (8(-)); [8,8'-mu-(1',2'-C(6)H(4))-1,1'-mu-SiMeH-3,3'-Co(1,2-C(2)B(9)H(9))(2)](-) (9(-)) and [8,8'-mu-(1',2'-C(6)H(4))-1-SiMe(3)-3,3'-Co(1,2-C(2)B(9)H(9))(1',2'-C(2)B(9)H(10))](-) (10(-)) ions have been prepared from [8,8'-mu-(1',2'-C(6)H(4))-3,3'-Co(1,2-C(2)B(9)H(10))(2)](-) (2(-)). Thus, depending on the chlorosilane, the temperature and the stoichiometry of nBuLi used, it has been possible to control the number of substituents on the C(c) atoms and the nature of the attached silyl function. All compounds were characterised by NMR and UV/Vis spectroscopy and MALDI-TOF mass spectrometry; [NMe(4)]-3, [NMe(4)]-4 and [NMe(4)]-7 were successfully isolated in crystalline forms suitable for X-ray diffraction analyses. The 4(-) and 8(-) ions, which contain one bridging -mu-SiMe(2) group between each of the dicarbollide clusters, were unexpectedly obtained from the reaction of the monolithium salts of 1(-) and 2(-), respectively, with Me(2)SiHCl at -78 degrees C in 1,2-dimethoxyethane. This suggests that an intramolecular reaction has taken place, in which the acidic C(c)-H proton reacts with the hydridic Si-H, with subsequent loss of H(2). Some aspects of this reaction have been studied by using DFT calculations and have been compared with experimental results. In addition, DFT theoretical studies at the B3 LYP/6-311G(d,p) level of theory were applied to optimise the geometries of ions 1(-)-10(-) and calculate their relative energies. Results indicate that the racemic mixtures, rac form, are more stable than the meso isomers. A good concordance between theoretical studies and experimental results has been achieved.  相似文献   

10.
A range of new alkylpyridinium and imidazolium carborane salts with [nido-C(2)B(9)H(12)](-), [closo-CB(11)H(12)](-), and [RC(2)B(11)H(11)](-) (R = methyl or butyl) anions have been prepared and characterized by physical and thermal methods, including the solid state structures of five of the salts determined by single crystal X-ray diffraction. The tendency of the salts to form low-melting ionic liquids has been assessed; all the salts studied with [nido-C(2)B(9)H(12)](-) anions melted below 100 degrees C and, significantly, have melting points that are 25-85 degrees C lower than those of the corresponding [closo-CB(11)H(12)](-) analogs, demonstrating that a wider range of boron-rich ionic liquid materials can be readily accessed.  相似文献   

11.
Ethylenediamine (en) solutions of [eta(4)-P(7)M(CO)(3)](3)(-) ions [M = W (1a), Mo (1b)] react under one atmosphere of CO to form microcrystalline yellow powders of [eta(2)-P(7)M(CO)(4)](3)(-) complexes [M = W (4a), Mo (4b)]. Compounds 4 are unstable, losing CO to re-form 1, but are highly nucleophilic and basic. They are protonated with methanol in en solvent giving [eta(2)-HP(7)M(CO)(4)](2)(-) ions (5) and are alkylated with R(4)N(+) salts in en solutions to give [eta(2)-RP(7)M(CO)(4)](2)(-) complexes (6) in good yields (R = alkyl). Compounds 5 and 6 can also be prepared by carbonylations of the [eta(4)-HP(7)M(CO)(3)](2)(-) (3) and [eta(4)-RP(7)M(CO)(3)](2)(-) (2) precursors, respectively. The carbonylations of 1-3 to form 4-6 require a change from eta(4)- to eta(2)-coordination of the P(7) cages in order to maintain 18-electron configurations at the metal centers. Comparative protonation/deprotonation studies show 4 to be more basic than 1. The compounds were characterized by IR and (1)H, (13)C, and (31)P NMR spectroscopic studies and microanalysis where appropriate. The [K(2,2,2-crypt)](+) salts of 5 were characterized by single crystal X-ray diffraction. For 5, the M-P bonds are very long (2.71(1) ?, average). The P(7)(3)(-) cages of 5 are not displaced by dppe. The P(7) cages in 4-6 have nortricyclane-like structures in contrast to the norbornadiene-type geometries observed for 1-3. (31)P NMR spectroscopic studies for 5-6 show C(1) symmetry in solution (seven inequivalent phosphorus nuclei), consistent with the structural studies for 5, and C(s)() symmetry for 4 (five phosphorus nuclei in a 2:2:1:1:1 ratio). Crystallographic data for [K(2,2,2-crypt)](2)[eta(2)-HP(7)W(CO)(4)].en: monoclinic, space group C2/c, a = 23.067(20) ?, b = 12.6931(13) ?, c = 21.433(2) ?, beta = 90.758(7) degrees, V = 6274.9(10) ?(3), Z = 4, R(F) = 0.0573, R(w)(F(2)) = 0.1409. For [K(2,2,2-crypt)](2)[eta(2)-HP(7)Mo(CO)(4)].en: monoclinic, space group C2/c, a = 22.848(2) ?, b = 12.528(2) ?, c = 21.460(2) ?, beta = 91.412(12) degrees, V = 6140.9(12) ?(3), Z = 4, R(F) = 0.0681, R(w)(F(2)) = 0.1399.  相似文献   

12.
Several tellurometalates of the general formula [MTe(7)](n)()(-) (n = 2, 3) have been isolated as salts of organic cations by reaction of suitable metal sources with polytelluride solutions in DMF. The [HgTe(7)](2)(-) anion has the same structure in both the NEt(4)(+) and the PPh(4)(+) salts except for a minor change in the ligand conformation. The [AgTe(7)](3)(-) and [HgTe(7)](2)(-) anions contain metal atoms coordinated in trigonal-planar fashion to eta(3)-Te(7)(4)(-) ligands. The central Te atom of an eta(3)-Te(7)(4)(-) ligand is coordinated to the metal atom and to two Te atoms in a "T"-shaped geometry consistent with a hypervalent 10 e(-) center. The planar [AuTe(7)](3)(-) anion may best be described as possessing a square-planar Au(III) atom coordinated to an eta(3)-Te(5)(4)(-) ligand and to an eta(1)-Te(2)(2)(-) ligand. The reaction of [NEt(4)](n)()[MTe(7)] (M = Hg, n = 2; M = Au, n = 3) with the activated acetylene dimethyl acetylenedicarboxylate (DMAD) has yielded the products [NEt(4)](n)()[M(Te(2)C(2)(COOCH(3))(2))(2)] (M = Hg, n = 2; M = Au, n = 1). The metal atoms are coordinated to two Te(COOCH(3))C=C(COOCH(3))Te(2)(-) ligands, for M = Hg in a distorted tetrahedral fashion and for M = Au in a square-planar fashion.  相似文献   

13.
The rare-earth tricyanomelaminates, [NH(4)]Ln[HC(6)N(9)](2)[H(2)O](7)xH(2)O (LnTCM; Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy), have been synthesized through ion-exchange reactions. They have been characterized by powder as well as single-crystal X-ray diffraction analysis, vibrational spectroscopy, and solid-state (1)H, (13)C, and (15)N MAS NMR spectroscopy. The X-ray powder pattern common to all nine rare-earth tricyanomelaminates LnTCM (Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy) indicates that they are isostructural. The single-crystal X-ray diffraction pattern of LnTCM is indicative of non-merohedral twinning. The crystals are triclinic and separation of the twin domains as well as refinement of the structure were successfully carried out in the space group P1 for LaTCM (LaTCM; P1, Z=2, a=7.1014(14), b=13.194(3), c=13.803(3) A, alpha=90.11(3), beta=77.85(3), gamma=87.23(3) degrees , V=1262.8(4) A(3)). In the crystal structure, each Ln(3+) is surrounded by two nitrogen atoms from two crystallographically independent tricyanomelaminate moieties and seven oxygen atoms from crystal water molecules. The positions of all of the hydrogen atoms of the ammonium ions and water molecules could not be located from difference Fourier syntheses. The presence of [NH(4)](+) ions as well as two NH groups belonging to two crystallographically independent monoprotonated tricyanomelaminate moieties has only been confirmed by subjecting LaTCM to solid-state (1)H, (13)C, and (15)N{(1)H} cross-polarization (CP) MAS NMR and advanced CP experiments such as cross-polarization combined with polarization inversion (CPPI). The (1)H 2D double-quantum single-quantum homonuclear correlation (DQ SQ) spectrum and the (15)N{(1)H} 2D CP heteronuclear-correlation (HETCOR) spectrum have revealed the hydrogen-bonded (N--HN) dimer of monoprotonated tricyanomelaminate moieties as well as H-bonding through [NH(4)](+) ions and H(2)O molecules. The structures of the other eight rare-earth tricyanomelaminates (LnTCM; Ln=Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy) have been refined from X-ray powder diffraction data by the Rietveld method. Photoluminescence studies of [NH(4)]Eu[HC(6)N(9)](2)[H(2)O](7)xH(2)O have revealed orange-red (lambda(max)=615 nm) emission due to the (5)D(0)-(7)F(2) transition, whereas [NH(4)]Tb[HC(6)N(9)](2)[H(2)O](7)xH(2)O has been found to show green emission with a maximum at 545 nm arising from the (5)D(4)-(7)F(5) transition. DTA/TG studies of [NH(4)]Ln[HC(6)N(9)](2)[H(2)O](7)xH(2)O have indicated several phase transitions associated with dehydration of the compounds above 150 degrees C and decomposition above 200 degrees C.  相似文献   

14.
Addition of the carbene 1,3-dimesitylimidazol-2-ylidene (IMes) to a toluene solution of Ag[closo-CB(11)H(12)] results in the formation of the complex [(IMes)(2)Ag](2)[Ag(2)[closo-CB(11)H(12)](4)], the anionic component of which contains two silver(I) centers bridged by two carboranes in addition to one terminally bound carborane on each metal, in the solid-state. Comparison of the observed (11)B[(1)H] NMR chemical shifts of [(IMes)(2)Ag](2)[Ag(2)[closo-CB(11)H(12)](4)] or Ag[closo-CB(11)H(12)] with [NBu(4)][closo-CB(11)H(12)] in CD(2)Cl(2) demonstrates that the silver ion interacts significantly with the cage in solution. Theoretical investigations using the ab initio/GIAO/NMR method of [closo-CB(11)H(12)](-) and Na[closo-CB(11)H(12)] as model geometries for the silver salts support experimental evidence for these Ag...[BH] interactions in solution.  相似文献   

15.
The icosahedral dicarboranes and their decapitated anion, 1-R'-1,2-C(2)B(10)H(10) (closo) and [7-R'-7,8-C(2)B(9)H(10)](-) (nido), exert a distict influence at the alpha position of substituents attached to the cage carbon atom. The closo fragment is electron-withdrawing while the nido anion is electron-releasing. These effects are studied by (31)P NMR, phosphorus oxidation, and phosphorus protonation in [7-PR(2)-8-R'-7,8-C(2)B(9)H(10)](-) species. The (31)P NMR chemical shift dependence is related to the R alkyl or aryl nature of [7-PR(2)-8-R'-7,8-C(2)B(9)H(10)](-). No direct relationship to the nature of the R substituent on the nido-carboranylmonphosphine toward oxidation has been found. The basicity of the nido-alkylcarboranylmonophosphines is the highest while the lowest corresponds to the nido-arylcarboranylmonophosphines. Interpretation can be carried out qualitatively by considering the electronic properties of the cluster and the nature of the R groups. The influence of R' is less relevant. Confirmation of the molecular structure of the oxidated and protonated nido-carboranylmonophosphine compounds was obtained by X-ray diffraction analysis of [NBu(4)][7-P(O)Ph(2)-8-Ph-7,8-C(2)B(9)H(10)] and [7-PH((i)Pr)(2)-8-Me-7,8-C(2)B(9)H(10)].  相似文献   

16.
The reaction of cyanogen chloride with [1-(4-C(7)H(7))-12-(C(5)H(3)-3,4-(CH(3))(2))-C(2)B(10)H(10)] (7) was found to yield two new C(5)-substituted carborane cluster-based compounds, [1-(4-C(7)H(7))-12-(C(5)H(2)-3-(CN)-3,4-(CH(3))(2))-C(2)B(10)H(10)] (8) and [1-(4-C(7)H(7))-12-(C(5)H-2,4-(CN)(2)-3,4-(CH(3))(2))-C(2)B(10)H(10)] (9). This cyano-substitution pattern is in contrast to the known substitution for the analogous organic quinarene[5.6.7] system. The observed unique cluster-based products may be understood by a combination of steric and electronic effects. Compounds 8 and 9 were characterized by complete multinuclear NMR, (1)H-(1)H COSY NMR, (1)H-(13)C HMQC NMR, FTIR, UV-Vis, IR, MS data and a single crystal analysis for 8 [X-ray data for 8: C(17)H(25)B(10)N, monoclinic, space group P2(1)/n with cell constants a = 8.6794(17) ?, b = 11.021(2) ?, c = 43.175(9) ?, β = 91.00(3)°, V = 4129.2(14) ?(3), Z = 8, R(1) = 0.0729, wR(2) = 0.1464].  相似文献   

17.
The 2e-reduction of 1,12-Ph2-1,12-closo-C(2)B(10)H(10) followed by oxidation or metallation gives products that arise from [7,9-Ph2-7,9-nido-C(2)B(10)H(10)](2-), formed by unexpectedly facile isomerisation of the kinetic 7,10-isomer: the 4,1,6-MC(2)B(10) compounds which result are progressively isomerised to 4,1,8- and 4,1,12-isomers for M = {CpCo} but to an equilibrium mixture of 4,1,8- and 4,1,12-isomers for M = {(arene)Ru}.  相似文献   

18.
19.
The monocarbon carborane [Cs][nido-7-CB(10)H(13)] reacts with the 16-electron [RuCl(2)(PPh(3))(3)] in a solution of benzene/methanol in the presence of N,N,N',N'-tetramethylnaphthalene-1,8-diamine as the base to give a series of 12-vertex monocarbon arene-biruthenacarborane complexes of two types: [closo-2-[7,11-exo-RuClPPh(3)(mu,eta(6)-C(6)H(5)PPh(2))]-7,11-(mu-H)(2)-2,1-RuCB(10)H(8)R] (5, R = H; 6, R = 6-MeO; 7, R = 3-MeO) and [closo-2-(eta(6)-C(6)H(6))-10,11,12-[exo-RuCl(PPh(3))(2)]-10,11,12-(mu-H)(3)-2,1-RuCB(10)H(7)R(1)] (8a, R(1) = 6-MeO; 8b, R(1) = 3-MeO, inseparable mixture of isomers) along with trace amounts of 10-vertex mononuclear hypercloso/isocloso-type complexes [2,2-(PPh(3))(2)-2-H-3,9-(MeO)(2)-2,1-RuCB(8)H(7)] (9) and [2,5-(Ph(3)P)-2-Cl-2-H-3,9-(MeO)(2)-2,1-RuCB(8)H(6)] (10). Binuclear ruthenacarborane clusters of both series were characterized by a combination of analytical and multinuclear NMR spectroscopic data and by single-crystal X-ray diffraction studies of three selected complexes, 6-8. In solution, isomers 8a,b have been shown to undergo the isomerization process through the scrambling of the exo-[RuCl(PPh(3))(2)] fragment about two adjacent triangular cage boron faces B(7)B(11)B(12) and B(8)B(9)B(12).  相似文献   

20.
Various products of the reaction of [E(ddp)] (ddp=2-{(2,6-diisopropylphenyl)amino}-4-{(2,6-diisopropylphenyl)imino}-2-pentene; E=Al, Ga) with Pt(0) and Pd(0) olefin complexes are reported. Thus, the reaction of [Pt(cod)(2)] (cod=1,5-cyclooctadiene) with two equivalents of [Ga(ddp)] yields [Pt(1,3-cod){Ga(ddp)}(2)] (1), whereas treatment of [Pd(2)(dvds)(3)] (dvds=1,1,3,3-tetramethyl1,3-divinyldisiloxane) with [E(ddp)] leads to the monomeric compounds [(dvds)Pd{E(ddp)}] (E=Ga (2 a), Al (2 b)) by substitution of the bridging dvds ligand. Both 1 and 2 a readily react with strong pi-acceptor ligands such as CO or tBuNC to give the dimeric compounds [M{mu(2)-Ga(ddp)}(L)] (L=CO, tBuNC; M=Pt (3 a, 5 a), Pd (3 b, 5 b)), respectively. Based on (1)H NMR spectroscopic data, [Pt{Ga(ddp)}(2)(CO)] is likely to be an intermediate in the formation of 3 a. Furthermore, reactions of 1 with H(2) and HSiEt(3) yield the monomeric compounds [Pt{Ga(ddp)}(2)(H)(2)] (7) and [Pt{Ga(ddp)}(2)(H)(SiEt(3))] (8). Finally, the reaction of [Pt(cod)(2)] with one equivalent of [Ga(ddp)] in the presence of H(2) in hexane gives the new dimeric cluster [Pt{mu(2)-Ga(ddp)}(H)(2)](2) (9).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号