首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the photoelectron spectra of the negative ions of 4-thiouracil (4-TU)(-) and 2,4-dithiouracil (2,4-DTU)(-). Both of these spectra are indicative of valence anions, and they are each dominated by a single broad band with vertical detachment energies of 1.05 and 1.4 eV, respectively. Complementary calculations by Dolgounitcheva, Zakrzewski, and Ortiz (see companion paper) are in accord with our experimental results and conclude that the (4-TU)(-) and (2,4-DTU)(-) anions, reported herein, are valence anions of canonical 4-thiouracil and canonical dithiouracil. Comparisons among the anions and corresponding neutrals of 4-thiouracil, 2,4-dithiouracil, 5-chlorouracil, 5-fluorouracil, and uracil itself show that both sulfur and halogen modifications of uracil give rise to significant changes in the electronic structure. The electron affinities of the first four are all substantially larger than that of the canonical uracil.  相似文献   

2.
The radicals and anions derived from the 9H tautomer of adenine by adding a hydrogen atom to one of the four double bonds of the adenine framework have been studied. Computations were carried out using a carefully calibrated density functional (B3LYP) method and basis set (DZP++). Optimized geometries, energies, and vibrational frequencies are predicted for eight radicals and anions. The radicals are found to lie in a range of 22 kcal mol(-1), with the radical derived by addition to the C(8) carbon atom being the lowest lying energetically. The anions are predicted to be bound species in the gas phase with an energetic range of 43 kcal mol(-1). Anions produced by addition of a hydride ion to adenine carbon atoms are found to be the most favorable. Six of the anions are predicted to be stable species with respect to electron detachment. The adiabatic electron affinities, vertical electron affinities, and vertical detachment energies are computed for the first time. Electron affinities for these radicals range from 0.0 to 2.0 eV. Radicals produced by addition to a nitrogen atom have near-zero adiabatic electron affinities, while radicals produced by addition at carbon atoms have considerably higher electron affinities.  相似文献   

3.
The structures and relative stabilities of the complexes between Cu2+ and uracil, 2-thiouracil, 4-thiouracil, and 2,4-dithiouracil were investigated by B3LYP/6-311+G(2df,2p)//B3LYP/6-31G* DFT calculations. In those systems in which both types of basic centers, that is, a carbonyl and a thiocarbonyl group, are present, association of Cu2+ with the oxygen atom is systematically favored, in contrast to what was found for the corresponding Cu+ complexes. This can be understood by considering that association of Cu2+ is immediately followed by oxidation of the base, which accumulates the negative charge at the oxygen atoms. Similarly, for 2,4-dithiouracil the most basic site for Cu+ attachment is the sulfur atom at the 4-position, while for association of Cu2+ it is sulfur at the 2-position. In contrast, differences between uracil-Cu+ and uracil-Cu2+ complexes are very small, and in both cases the oxygen atom at the 4-position is the most basic. Cu2+ binding energies are about 4 and 1.2 times larger than Cu+ binding energies and proton affinities, respectively. Uracil- and thiouracil-Cu2+ complexes are thermodynamically unstable but kinetically stable with respect to their dissociation into uracil*+ + Cu+ or thiouracil*+ + Cu+. The Cu2+ binding energies vary with the difference between the second ionization potential of the metal and the first ionization potential of the base. regardless of the reference acid (H+, Cu+, Cu2+) the basicity trend is 2,4-dithiouracil > 4-thiouracil > 2-thiouracil > uracil.  相似文献   

4.
The optimized geometries, adiabatic electron affinities, vertical electron affinities, vertical electron detachment energies (for the anions), and IR-active vibrational frequencies have been predicted for the long linear carbon chains HC(2)(n)()(+1)H (n = 4-11). The B3LYP density functional combined with DZP and TZ2P basis sets was used in this theoretical study. These methods have been extensively calibrated versus experiment for the prediction of electron affinities (Chem. Rev. 2002, 102, 231). The computed physical properties are discussed and compared with the even carbon chains HC(2)(n)()H. The predicted electron affinities form a remarkably regular sequence: 2.12 eV (HC(9)H), 2.42 eV (HC(11)H), 2.66 eV (HC(13)H), 2.85 eV (HC(15)H), 3.01 eV (HC(17)H), 3.14 eV (HC(19)H), 3.25 eV (HC(21)H), and 3.35 eV (HC(23)H). These electron affinities are as much as 0.4 eV higher than those for analogous even carbon chains. The predicted structures display an intermediate cumulene-polyacetylene type of bonding, with the inner carbons appearing cumulenic and the outer carbons polyacetylenic.  相似文献   

5.
Several decouplings of the electron propagator, including the relatively new P3+ approximation for the self-energy, have been used to calculate vertical electron detachment energies of tautomeric forms of closed-shell, pentagonal, aromatic anions in which ring carbons without bonds to hydrogens appear. This study extends previous work in which the most stable forms of anionic, five-member rings with one to five nitrogens were considered. Whereas the lowest electron detachment energies sometimes are assigned by Koopmans's theorem results to pi orbital vacancies, electron propagator calculations always obtain sigma orbital vacancies for the ground states of the doublet radicals. Higher electron detachment energies that correspond to excited doublets with pi vacancies also are presented. The predicted transition energies are in good agreement with low-intensity peaks in recent anion photoelectron spectra that have been assigned to less stable, tautomeric forms of these anions.  相似文献   

6.
Predictions on the photoelectron spectra of deprotonated cytosine anions (cytosinate, Cye(-)) have been made with ab initio electron propagator methods. Two imino-oxo forms are most stable, but four other isomers have energies within 10 kcal/mol. The first vertical electron detachment energies (VEDEs) for the three most stable Cye(-) isomers are approximately 3.4 eV. Imino-oxy VEDEs are about 0.3 eV smaller. For each anion, the lowest VEDE corresponds to a pi Dyson orbital. The order of higher final states is changed when relaxation and correlation effects are considered. Considerable mixing between lone-pair and bonding lobes occurs in the sigma Dyson orbitals.  相似文献   

7.
Various decouplings of the electron propagator have been employed to provide theoretical comparison to experimental electron detachment energies for the pyrrolide, imidazolide, and pyrazolide anions. Predictions for isoelectronic anions in which CH groups are replaced by N atoms also are reported. The ab initio electron propagator results agree closely with experimental values, and the associated Dyson orbitals provide a detailed catalog of bonding changes as the number and positions of N atoms vary within the set of pentagonal aromatic anions.  相似文献   

8.
Photoelectron spectra of anionic clusters of silicon require reliable theoretical calculations for their assignment and interpretation. Electron propagator calculations in the outer valence Green's-function approximation with two well-characterized, all-electron basis sets on vertical electron detachment energies (VEDEs) of anions are compared to similar calculations that employ Stuttgart pseudopotentials. Tests on Si(n) (-) clusters with n=3-7 exhibit an encouraging agreement between the all-electron and pseudopotentials results and between electron propagator predictions and experiments and values obtained from coupled-cluster calculations. To illustrate the capabilities of the new approach based on a Si pseudopotential and electron propagator methods, VEDE calculations on Si(10) (-) are presented.  相似文献   

9.
Photoelectron spectra of deoxyribonucleotide anions are interpreted with ab initio, electron propagator calculations. Ground-state structures display hydrogen bonds which are not present in less stable minima that resemble Watson-Crick fragment geometries. For the adenosine and thymidine anions, there are two vertical electron detachment energies (VEDEs) within 0.1 eV of each other that correspond to phosphate- and base-centered Dyson orbitals (DOs). The first VEDE of the cytidine anion belongs to a phosphate-centered DO. The anomalously low VEDE of the guanosine anion is assigned to a base-centered, pi DO. Higher VEDEs of all four anions also are assigned.  相似文献   

10.
Anion photoelectron spectroscopic experiments and calculations based on density functional theory have been used to investigate and uniquely identify the structural, electronic, and magnetic properties of both neutral and anionic (Rh(m)Co(n)) and (Rh(m)Co(n))(-) (m=1-5, n=1-2) clusters, respectively. Negative ion photoelectron spectra are presented for electron binding energies up to 3.493 eV. The calculated electron affinities and vertical detachment energies are in good agreement with the measured values. Computational results for geometric structures and magnetic moments of both cluster anions and their neutrals are presented.  相似文献   

11.
Recently, Ishida and co-workers have isolated silylene radical anions via the one-electron reduction of isolable cyclic dialkylsilylenes, discovering these corresponding radical anions to be relatively stable at low temperatures. Herein we report theoretical predictions of the adiabatic electron affinities (AEA), vertical electron affinities, and vertical detachment energies of a series of methyl, silyl, and halosubstituted silylene compounds. This research utilizes the carefully calibrated DZP++ basis with the combination of the popular nonhybrid and hybrid DFT functionals, BLYP, B3LYP, and BHHLYP. The level of theory employed and the ensemble of species under study confirm the ability of silylenes to bind excess electrons with Si(SiH(3))(2) being the most effective, having a predicted AEA of 1.95 eV. While it is known that methyl substituents have a diminishing effect on the computed electron affinities (EAs), it is shown that fluorine shows an analogous negative effect. Similarly, previous suggestions that Si(CH(3))(2) will not bind an electron appear incorrect, with EA[Si(CH(3))(2)] predicted here to be 0.46 eV.  相似文献   

12.
Photoelectron spectra of Al3O4H2- clusters formed by reactions of Al3O3- with water molecules have been interpreted recently in terms of dissociative absorption products with hydroxide and oxide anions that are coordinated to aluminum cations. Alternative isomers with Al-H bonds have lower energies, but barriers to hydrogen migrations that break O-H bonds and create Al-H bonds are high. Ab initio electron propagator calculations of the vertical electron detachment energies of the anions indicate that the species with hydrides cannot be assigned to the chief features in the photoelectron spectrum. Therefore, the previously studied dissociative absorption products are the structures that are most likely to be probed in the photoelectron spectra.  相似文献   

13.
Experimental and theoretical studies are carried out to determine the influence of thioketo substitution on the properties of uracil and its noncovalent interactions with alkali metal ions. Bond dissociation energies of alkali metal ion-thiouracil complexes, M(+)(SU), are determined using threshold collision-induced dissociation techniques in a guided ion beam mass spectrometer, where M(+) = Li(+), Na(+), and K(+) and SU = 2-thiouracil, 4-thiouracil, 2,4-dithiouracil, 5-methyl-2-thiouracil, and 6-methyl-2-thiouracil. Ab initio electronic structure calculations are performed to determine the structures and theoretical bond dissociation energies of these complexes and provide molecular constants necessary for thermodynamic analysis of the experimental data. Theoretical calculations are also performed to examine the influence of thioketo substitution on the acidities, proton affinities, and A::SU Watson-Crick base pairing energies. In general, thioketo substitution leads to an increase in both the proton affinity and the acidity of uracil. 2-Thio substitution generally results in an increase in the alkali metal ion binding affinities but has almost no affect on the stability of the A::SU base pair. In contrast, 4-thio substitution results in a decrease in the alkali metal ion binding affinities and a significant decrease in the stability of the A::SU base pair. In addition, alkali metal ion binding is expected to lead to an increase in the stability of both single-stranded and double-stranded nucleic acids by reducing the charge on the nucleic acid in a zwitterion effect as well as through additional noncovalent interactions between the alkali metal ion and the nucleobases.  相似文献   

14.
High energy photon is needed for photoelectron spectroscopy (PES) of anions with high electron binding energies, such as superhalogens and O-rich metal oxide clusters. The highest energy photon used for anion PES in the laboratory has been 157 nm (7.866 eV) from F2 eximer lasers. Here, we report an anion PES experiment using coherent vacuum ultraviolet radiation at 118.2 nm (10.488 eV) by tripling the third harmonic output (355 nm) of a Nd:YAG laser in a XeAr cell. Our study focuses on a set of superhalogen species, MCl(4) (-) (M=Sc, Y, La), which were expected to possess very high electron binding energies. While the 157 nm photon can only access the ground state detachment features for these species, more transitions to the excited states at binding energies higher than 8 eV are observed at 118.2 nm. The adiabatic detachment energies are shown to be, 6.84, 7.02, and 7.03 eV for ScCl(4) (-), YCl(4) (-), and LaCl(4) (-) eV, respectively, whereas their corresponding vertical detachment energies are measured to be 7.14, 7.31, and 7.38 eV.  相似文献   

15.
The photoelectron spectrum (PES) of the uracil anion is reported and discussed from the perspective of quantum chemical calculations of the vertical detachment energies (VDEs) of the anions of various tautomers of uracil. The PES peak maximum is found at an electron binding energy of 2.4 eV, and the width of the main feature suggests that the parent anions are in a valence rather than a dipole-bound state. The canonical tautomer as well as four tautomers that result from proton transfer from an NH group to a C atom were investigated computationally. At the Hartree-Fock and second-order Moller-Plesset perturbation theory levels, the adiabatic electron affinity (AEA) and the VDE have been converged to the limit of a complete basis set to within +/-1 meV. Post-MP2 electron-correlation effects have been determined at the coupled-cluster level of theory including single, double, and noniterative triple excitations. The quantum chemical calculations suggest that the most stable valence anion of uracil is the anion of a tautomer that results from a proton transfer from N1H to C5. It is characterized by an AEA of 135 meV and a VDE of 1.38 eV. The peak maximum is as much as 1 eV larger, however, and the photoelectron intensity is only very weak at 1.38 eV. The PES does not lend support either to the valence anion of the canonical tautomer, which is the second most stable anion, and whose VDE is computed at about 0.60 eV. Agreement between the peak maximum and the computed VDE is only found for the third most stable tautomer, which shows an AEA of approximately -0.1 eV and a VDE of 2.58 eV. This tautomer results from a proton transfer from N3H to C5. The results illustrate that the characteristics of biomolecular anions are highly dependent on their tautomeric form. If indeed the third most stable anion is observed in the experiment, then it remains an open question why and how this species is formed under the given conditions.  相似文献   

16.
As a general rule, saturated hydrocarbons are unable to bind an electron, i.e., their electron affinities are negative, but the corresponding perfluorinated molecules can have significant electron affinities, especially in the case of branched and ring systems. Four different density functional theory (DFT) methods in conjunction with double-zeta plus polarization function augmented diffuse function basis sets (DZP++) have been employed to study the equilibrium geometries, electron affinities, and vibrational frequencies of the adamantane (C10H16) and perfluoroadamantane (C10F16) molecules. Three types of neutral-anion separations reported are the adiabatic electron affinity, the vertical electron affinity, and the vertical detachment energy. The adiabatic electron affinity predicted at the DZP++ B3LYP level of theory for adamantane is, as expected, negative (-0.58 eV), while that for perfluoroadamantane is distinctly positive, namely, 1.06 eV (or 1.31 eV after correction for zero-point vibrational energies).  相似文献   

17.
The interaction of Cd2+ with uracil,2-thiouracil,4-thiouracil and 2,4-dithiouracil have been investigated by the density functional theory(DFT) calculations.For uracil and 2,4-dithiouracil,where the two basic sites are the same,Cd2+ attachment to the heteroatom at position 4 is preferred.However,for the systems where both types of basic centers,a carbonyl and a thiocarbonyl groups,are present,Cd2+ association with sulfur is favorable.The enhanced stability of these enolic and thiol forms comes from Cd2+ interaction with two basic sites simultaneously,which thereby triggers a significant aromatization of the ring.More significantly,the Cd2+ binding energy with uracil and its thio-derivatives is larger than the tautomerization barriers connecting the diketo-like forms with the corresponding enolic-like tautomers.Consequently,when associated with Cd2+,all tautomers are energetically accessible and should be observed in the gas phase.  相似文献   

18.
Abstract— The phosphorescence of uracil, 2-thiouracil, 2 ,4-dithiouracil and 2-mercaptopyrimidine was studied at 77 K. 2-Thiouracil and 2,4-dithiouracil showed phosphorescence quantum yields of 0.65 and 0. 1 , respectively. The emitting triplet states of these compounds have been assigned as the 3(π, π*) type. The enhancement of spin-orbit coupling through the involvement of the 3d orbitals on sulfur has been invoked in describing emission characteristics of thiouracils.  相似文献   

19.
Electron attachment to the polyaromatic hydrocarbons coronene and corannulene is studied in the electron energy range of about 0-14 eV using a high-resolution crossed electron-neutral beam setup. The major anions observed are the parent anions peaking at about 0 eV with cross sections of 3.8 x 10(-20) and 1 x 10(-19) m(2), respectively. The only fragment anions formed in coronene and corannulene are the dehydrogenated coronene and corannulene anions. Other anions observed in the negative mass spectra at about 0 eV can be ascribed to impurities of the sample. High-level quantum-mechanical studies are carried out for the determination of electron affinities, hydrogen binding energies, and structures of both molecules. The behavior of coronene and corannulene upon electron attachment is compared with that of other polyaromatic hydrocarbons studied previously.  相似文献   

20.
High level ab initio electronic structure calculations at different levels of theory have been performed on HNP and HPN neutrals, anions, and cations. This includes standard coupled cluster CCSD(T) level with augmented correlation-consistent basis sets, internally contacted multi-reference configuration interaction, and the newly developed CCSD(T)-F12 methods in connection with the explicitly correlated basis sets. Core-valence correction and scalar relativistic effects were examined. We present optimized equilibrium geometries, harmonic vibrational frequencies, rotational constants, adiabatic ionization energies, electron affinities, vertical detachment energies, and relative energies. In addition, the three-dimensional potential energy surfaces of HNP(-1,0,+1) and of HPN(-1,0,+1) were generated at the (R)CCSD(T)-F12b∕cc-pVTZ-F12 level. The anharmonic terms and fundamentals were derived using second order perturbation theory. For HNP, our best estimate for the adiabatic ionization energy is 7.31 eV, for the adiabatic electron affinity is 0.47 eV. The higher energy isomer, HPN, is 23.23 kcal∕mol above HNP. HPN possesses a rather large adiabatic electron affinity of 1.62 eV. The intramolecular isomerization pathways were computed. Our calculations show that HNP(-) to HPN(-) reaction is subject to electron detachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号